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Abstract

Regression Tree (RT) forecasting models are widely used in short-term demand
forecasting. Likewise, Self-Organizing Maps (SOM) models are known for their ability
to cluster and organize unlabeled big data. Herein, a combination of these two
Machine Learning (ML) techniques is proposed and compared to a standalone RT
and a Seasonal Autoregressive Integrated Moving Average (SARIMA) models, in
forecasting the short-term water demand of a municipality. The inclusion of the
Unsupervised Machine Learning clustering model has resulted in a significant
improvement in the performance of the Supervised Machine Learning forecasting
model. The results show that using the output of the SOM clustering model as an
input for the RT forecasting model can, on average, double the accuracy of water
demand forecasting. The Mean Absolute Percentage Error (MAPE) and the
Normalized Root Mean Squared Error (NRMSE) were calculated for the proposed
models forecasting 1 h, 8 h, 24 h, and 7 days ahead. The results show that the hybrid
models outperformed the standalone RT model, and the broadly used SARIMA
model. On average, hybrid models achieved double accuracy in all 4 forecast
periodicities. The increase in forecasting accuracy afforded by this hybridized
modeling approach is encouraging. In our application, it shows promises for more
efficient energy and water management at the water utilities.

Introduction
Marching forward toward true sustainability, reliable and resilient water systems are

essential in a world facing the challenge of water scarcity. Smart decision making in

water systems is one of the two keys a Smart Water consists of (Joong 2018). The ap-

plication of water demand forecasting is crucial for optimal operation and control of

Smart Water Grids (SWG) (Public Utilities Board Singapore 2016). Supplying water at

lower cost, with less energy, and lighter load on the network infrastructure is a primary

goal of water utilities. This goal is achieved through multiple practices and applications

in the water supply system; one of which is an accurate forecast of the systems’ future

demand. Short-term water demand forecasting has been employed by a plethora of

utilities, researchers, and developers to tackle the imbalance between supply and de-

mand. Short-term water demand forecasting can be used to manage water pressure,
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control leakage, schedule pumping operations, system maintenance, and infrastructure

development (Zhou et al. 2002). However, developing a water demand forecasting

model is challenging. That is because the accuracy of the model output controls the ef-

ficiency of the system response (Jamieson et al. 2007).

Forecasting models have been a topic of significant interest to researchers and devel-

opers alike. A wide spectrum of forecasting models has been featured in the literature.

Kozlowski et al. 2018; Donkor et al. 2014; House-Peters and Chang 2011 presented an

extensive review of methods and models used in water demand forecasting. Zhang

2001 largely classified these models into two groups, linear and nonlinear. Linear

models are used extensively owing to their simplicity and the practicality of the re-

quired data acquisition. The ease of implementation and ability to update make these

models very attractive. Autoregressive Integrated Moving Average (ARIMA) and uni-

variate time series analysis models have been proposed by many researchers (Zhou

et al. 2000; Maidment and Miaou 1986; Maidment et al. 1985; Perry 1981; Hughes

1980) to forecast water demand. ARIMA models can be employed to forecast water de-

mand; however, the accuracy of the forecast can be unsatisfactory (Kozlowski et al.

2018). To overcome the unsatisfactory results of the linear models, researchers devel-

oped nonlinear models. Nonlinear models deemed to better capture the nonlinear pat-

terns in water demand. Nonlinear models are costly and difficult to develop,

implement, and update. However, their capacity to analyze big data with multiple pa-

rameters and concurrently find the nonlinearity relations between variables, have make

them powerful prediction tools. Artificial Neural Networks (ANN), nonlinear regression

models, fuzzy logic, and other nonlinear models are among the most popular for fore-

casting water demand (Bennett et al. 2013; Boguadis et al. 2005; Adamowski and

Karapataki 2010; Adamowski et al. 2012; Tiwari and Adamowski 2015; Mitrea et al.

2009; Ghiassi et al. 2008; Ghiassi et al. 2005; Hippert et al. 2001; Jain et al. 2001; Cutore

et al. 2008; Nasseri et al. 2011).

Two sub-groups can be further distinguished: Standalone and hybrid. Standalone are

models that forecast the demand using one technique, where hybrid models are a com-

bination of more than one technique. Standalone linear and nonlinear models are the

dominant in the application of demand forecasting; however, researchers have also

combined two or more models. Shamseldin and O’Connor 2001 combined a data-

driven ANN model and a deterministic model to forecast demand. Abebe and Price

2003 added an ANN prediction model to improve rainfall-runoff model forecasts. The

inclusion of the ANN model in both hybrid models was to calculate innovations by be-

ing calibrated to residual error time-series. Hiroyuki et al. 2001 combined multi-layer

perceptron (MLP) of ANN model and a fuzzy regression tree model to forecast demand

in power grid. While the MLP model was employed to forecast one step ahead, the

fuzzy regression tree model assisted by determining a split value. This value helped or-

ganizing the input data in classes according to specific data rules. These two fused

models were proven effective in forecasting power systems load. Mori and Takahashi

2011 proposed another example of hybrid model. A Regression Tree (RT) model was

fused with a Relevance Vector Machine (RVM) model. The RT model used some dis-

tinct characteristic similarities to classify data into clusters. The classification technique

abated the RVM prediction task in smaller clusters with common characteristics. The

hybrid model was employed to successfully forecast the electric load in Japan. Tiwari
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and Adamowski 2013 assembled multiple ANN models developed using bootstrap sam-

pling and wavelet analysis. Their hybrid model was shown to outperform standalone

ANN, ARIMA, and ARIMA with exogenous variables (i.e. ARIMAX) models when de-

ployed to forecast water demand.

Despite that hybrid models were mostly developed to forecast electric load; re-

searchers have highlighted strong similarities between water and electricity demand

patterns and forecasting approaches (Perry 1981). These similarities are represented by:

demand driving factors, demand trend and seasonality, economic and socio-economic

parameters, etc. Table 1 highlights short-term load forecasting studies in both water

and power grids. Models listed in this table are distinguished by their mathematical

representation (i.e. linear/nonlinear) and performance (i.e. standalone/hybrid).

In this paper, short-term water demand forecasting application is achieved through a

hybrid ANN model. The hybrid model consists of a clustering unsupervised and a pre-

dictive supervised machine learning models. The performance and complexity of the

resulted fused model are investigated. The objective is to inspect whether adding an

auxiliary clustering model to the forecasting model improves its performance or not.

This is presented in the following flow: section 2 introduces the location and data of

the studied water utility and its unique characteristics. Section 3 details the imple-

mented forecasting methodology and forecasting models. The performance, computa-

tional load, and application of the hybrid model is presented and discussed in section 4.

And finally, concluding remarks for this work is highlighted in section 5.

Study area and data
The data analyzed in this paper were collected from a water utility that services primar-

ily rural areas located in Southwestern Ontario, Canada. The water utility supplies

water to more than 65,000 residents, agricultural, and other commercial and industrial

customers. On average, commercial greenhouses are the utility’s dominant water con-

sumers with an annual share of 80%. Since the legalization of cannabis in Canada in

2018, this annual percent share has been increasing according to the water utility’s re-

ports. The utility’s reports show frequent requests by the commercial greenhouses on

increasing their water demand drastically. This dynamic variance accompanied by other

demand-driving factors have pressured the supply side, water supply systems, in the

region.

Input data

The performance of a short-term water demand forecasting model is dependant on the

input type and the temporal resolution of the fed data. Although a number of re-

searchers (Boguadis et al. 2005; Ghiassi et al. 2008; Jain and Ormsbee 2002; Rice et al.

2017) showed that exogenous inputs can improve model predictability, a preliminary

study (Bata et al. 2020) in the same area revealed that temporal inputs of the historical

water demand are the main driver. The study has also highlighted that 4 recent months

of 1-h resolution data is sufficient in the application of short-term water demand fore-

casting at the studied water utility. Therefore, the input data collected for this study is

a 1-h resolution data that spans the last 4 months of 2017. Figure 1 shows the historical

water outflow in (m3/hr) for the studied water utility during the months of August (top
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left), September (top right), October (bottom left), and November (bottom right) of

2017. The water demand can be seen from this figure, where the water outflow is at

minimum around midnight and increases to reach its peak around noon. Although

water demand, reflecting water consumption, is usually at peak during early morning

and early evening, this is not the case here. That is because 80% of the total utility’s de-

mand is consumed by commercial greenhouses. These commercial greenhouses have

their own water storage facilities that help them avoid consuming expensive-water dur-

ing peak hours (note that water price fluctuates based on time-of-use in this region).

Also observed is the gradual decrease in peak demand between the months of August

and November. This is due to the seasonality of grown crops at the commercial

greenhouses.

A unique indicator (i.e. predictor) has been assigned to each data point to address

the abovementioned demand patterns and observations. The first indicator is hour of

the day. This indicator assigned a value between 1 (represents 12:00 am – 01:00 am)

and 24 (represents 11:00 pm – 12:00 am) to each data point. The second indicator is

day of the month (e.g. values ranged between 1 and 31 for the month of August). The

third indicator is month of the year where each data point was assigned a value be-

tween 8 (for August) and 11 (for November).

Data correlation

The correlation between the target, the current water outflow (Qt), and other input

data (i.e. predictors) was calculated. Pearson Correlation Coefficient (PCC) was calcu-

lated using eq. 1. PCC evaluates the linear relationship between two variables, and it

ranges between − 1 to 1, where 0 indicates no correlation. Table 2 shows the investi-

gated predictors ranked according to their correlation strength with the water outflow.

Table 2 reveals that the strongest predictor with the highest PCC value is the K value

for the same day previous hour water outflow. Although this is the most correlated pre-

dictor, it was not used in most of the models in this paper. That is because this pre-

dictor would be practical to use only in the 1 h ahead forecast. If the forecast is to be

performed for other periodicities (8 h, 24 h, and 1 week ahead in this study), the values

Fig. 1 The utility hourly water outflow (August – November), 2017. A 4-month (August–November) hourly
water outflow dataset is shown in this figure, measured in m3/hr. The hourly water outflow is the target
dataset used for clustering, prediction, and performance assessment in the model
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for this predictor would be unknown. The same concept applies for other predictors

chosen to train models that predicted the water demand 8 h, 24 h, and 1 week ahead.

Predictors ranked 2nd, 3rd, and 4th had a relatively strong correlation of approxi-

mately 0.8. These three predictors were used in training, testing, and validating the pro-

posed models to forecast water demand 1 h, 8 h, 24 h, and 1 week ahead. Predictors

ranked 5th and 6th had a relatively moderate correlation, however, they did not add

any significance in models performance. This was also the case for the weakest studied

correlated predictors ranked 7th and 8th.

PCC ¼ n
P

XiYi−
P

Xi
P

Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

Xi2−
P

Xið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

Yi2−
P

Yið Þ2
q ð1Þ

Where,

n: is the number of data points

i: is the data point, ranges from i = 1 to i = n

Xi: is the ith value of variable X

Yi: is the ith value of variable Y

Forecasting methodology and models
This section presents a description of the forecasting methodology, the forecasting ap-

proach, the forecasting models, and the model performance assessment approach. Fig-

ure 2 illustrates the forecasting flowchart. The process begins with gathering available

historical water demand data for the studied system. The data at this stage is usually

raw. Here, raw data is referred to as pre-processed data. Raw data contains erroneous

data (e.g. zero water outflow), noisy data (e.g. untrue water outflow), and/or missing

data. Raw data is cleaned, smoothed, and imputed, where it becomes processed data.

Then, 75% of the processed data, training set, is fed to two separate models, SARIMA

model and Hybrid model. A description of the SARIMA model and the Hybrid model

is presented in sections 3.1 and 3.2, respectively.

After the models are trained and calibrated, 15% of the processed data is used for

testing while the reminder of 10% is deployed to validate the models. This data division

configuration was used based on the guidelines of (Hunter et al. 2012). At this point,

models can be fed with the time ahead input data to predict the target, water outflow.

Table 2 Pearson Correlation Coefficient (PCC) between the utility water Outflow and the
predictors used in forecasting

Predictor Rank PCC

Ka same day previous hour 1 0.843

Outflow previous day same hour 2 0.837

Outflow previous week same hour 3 0.821

K previous week same hour 4 0.793

Outflow average previous 24 h 5 0.562

Month of the year 6 −0.529b

Hour of the day 7 0.194

Day of the month 8 −0.058
aK is the cluster number obtained from the SOM model output
bNegative PCC means inverse correlation
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SARIMA model

SARIMA model, denoted by ARIMA (p, d, q) x (P, D, Q) s, is a simple statistical model

that is used to analyze and forecast time series data (Shumway and Stoffer 2000). The

(p, d, q) non-seasonal order of the model is the number of Autoregressive (AR) param-

eters, differences, and Moving Average (MA) parameters. The (P, D, Q) s order of the

seasonal order of the model is the AR parameters, differences, MA parameters, and

periodicity. SARIMA model is formulated as (Shumway and Stoffer 2000):

ΦP BS
� �

φ Bð Þ∇D
S ∇

d X t ¼ δþΘQ BS
� �

θ Bð Þ W t ð2Þ

Where,

ΦP (BS): is the seasonal AR parameter of order P

φ(B): is the ordinary non-seasonal AR parameter

∇D
S : is the seasonal difference component (∇D

S = {1 - BS} D)

∇d: is the ordinary non-seasonal difference component (∇d = {1 – B} d)

Xt: is the measured time series denoted by time t

δ: is the intercept

ΘQ (BS): is the seasonal MA parameter of order Q

Fig. 2 Forecasting methodology flowchart. A flowchart of the steps developing, calibrating, and validating
the models is shown. The historical water demand raw data is pre-processed, where missing and erroneous
data are cleaned and imputed. Then, processed data is fed into the SARIMA model, whereas it is divided
into two groups, target data and input data for the hybrid model. For the hybrid model, the target data is
fed into the SOM model and the input data is sent directly to the RT model. In the SOM model, the target
data is clustered and the output cluster number accompanied with the target data is added to the input
data in the RT model. At this point, the RT model performs the prediction t time steps ahead. After
predicting the target, the performance of the model is assessed (i.e. compared to the held back water
demand data). If the performance is satisfactory, the model is implemented to forecast t time steps ahead.
However, usually the desired performance cannot be attained from the first trial. In this case, more neurons
can be added to the SOM model and/or more leaves and folds can be added to the RT model
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θ(B): is the ordinary non-seasonal MA parameter

Wt: is the usual Gaussian noise process

Figure 3 shows the algorithm used to determine these parameters and develop

SARIMA models in this paper. SARIMA seasonal and non-seasonal parameters are

estimated iteratively through plotting the Autocorrelation Function (ACF) and the

Partial Autocorrelation Function (PACF). SARIMA is a simple traditional model

that can be trained and fitted on a small dataset. Arandia et al. 2016 proposed six

SARIMA models that were trained by three small datasets (24 h and 7 days win-

dows, and 15 min, 1 h, and 24 h resolutions). A 7-day window was showed to be

sufficient to train the SARIMA model. In this paper, two SARIMA models with

two different training windows were fitted to forecast water demand. These models

are displayed in Table 3, where they are distinguished by their seasonal period.

Hybrid model

The hybrid model in this study comprises of two models, SOM model and RT model. The

practice for the proposed hybrid model is to simply feed the output of the SOM clustering

model, accompanied by other desired correlated inputs, to the RT forecasting model.

SOM, also known as Kohonen Neural Networks (Kohonen 1982), is an unsupervised

learning technique that reduces data dimensionality. SOM uses competitive learning to

cluster input data into groups while preserving the topology and the distribution of the

input data. Simply stated, an n-dimensional grid of neurons compete to win data points

according to how close these points are in the input pattern. The patterns that are close

in the input space will be mapped to units that are close in the output space (i.e. grid)

(Bação et al. 2005). Figure 4 illustrates the mechanism of a 2-dimensional (2D) grid of

3 neurons competing to map input data into an output of 9 clusters. As shown in this

figure, input data points (I1, I2, …, In) are fed to the network where a same initial

weight is assigned. Each data point multiplied by its assigned weight is called a node.

Then, the Euclidean distance is computed between each node and all competing

Fig. 3 SARIMA model algorithm. This figure shows the algorithm used to develop SARIMA forecasting
models. Processed data is fed to the model where the model order parameters are identified by plotting
the Autocorrelation Factor (ACF) and the Partial Autocorrelation Factor (PACF). After reaching a satisfying
performance, the time ahead input data is read to predict the response (i.e. the water demand)
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neuron (3 neurons in this example). The data point in this specific node is won by only

the neuron with the shortest computed distance. The neurons that did not win this

data point are topologically mapped using a neighbourhood function. This function de-

termines how close each neuron should be to other competing neurons. At the end of

this mapping technique and before processing the next input data point, weights are

adjusted according to the previous neighbourhood topology. By the end of the training,

the input data is grouped in 9 clusters that have the same topology as the input space.

In this study, 2D-SOM are developed and implemented to cluster the water outflow

input data using the algorithm shown in Fig. 5a. In the hybrid model, four 2D-SOM

clustering models were developed. These four models vary with the number (N) of neu-

rons used in the 2D grid layer. For example, HYB-2 N is a hybrid model with 2 neurons

in each dimension of the 2D grid layer. For our purpose, N ranged between 2 and 5. If

N were to be less than 2 (i.e. N = 1), the resulted number of clusters is N2 which equals

to 1. This 1 cluster would basically have the same input dataset topology. Therefore,

the minimum number of neurons was set to 2. The upper limit in this study is 5 neu-

rons was the limit in this study. That is because using 6 or more neurons did not yield

in any significant efficiency increase in the performance of the SOM model and the

overall hybrid model.

RT is a supervised learning technique that is used for prediction. RT is the numeric

outcome model of the general classification and regression tree (CART) introduced by

(Breiman et al. 1984). The model is constructed with an assembly of rules based on var-

iables extracted from the dataset (i.e. predictors). These rules are represented by values

that are selected to form the best possible splits to differentiate instances (i.e.

Fig. 4 2-dimentional (2D) SOM structure with number of neurons (N) equal 3. This 2D network structure
presents a brief introduction to the mechanism of the SOM. The inputs are fed to the map where initial
weights are assigned. Then, by calculating the Euclidean Distance, the indices are arranged in clusters. The
number of resulted clusters depends on the number of neurons selected when the map is structured. Each
index is won by one neuron

Table 3 SARIMA model structure identified

Model identifier Resolution (hr) f (hr − 1) Seasonal period (hr) Structure

S-24 1 1 24 ARIMA (0, 1, 2) X (0, 1, 1)24

S-168 1 1 168 ARIMA (0, 1, 2) X (0, 1, 1)168
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observations). Once a rule, also called decision, is selected, a split is applied at a specific

node. This process continues to be applied to each node in the tree through a recursive

procedure. RT models are obtained by repeatedly dividing the data space and fitting a

simple prediction model within each split. As a result, the data division can be repre-

sented graphically as a decision tree (Loh 2011). This splitting process continues until a

predefined limit is reached. This limit could be where no further information gain can

be achieved. Alternatively, splitting can be left to continue where the tree is pruned at

the end of the process. Pruning is a technique that establish stopping rules to prevent

the growth of tree sections that do not seem to improve the accuracy of the predicting

model.

a

b

Fig. 5 a SOM model algorithm. This figure shows the algorithm used to develop SARIMA forecasting
models. Processed target data is fed to the model where the model is trained, tested, and validated. After
reaching a satisfying performance, the time ahead input data is read to predict the response (i.e. the cluster
number). b RT model algorithm. This figure shows the algorithm used to develop RT forecasting models.
Processed target data is fed to the model where the model is trained, tested, and validated. After reaching
a satisfying performance, the time ahead input data is read to predict the response (i.e. the water demand)
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RT model development begins with feeding the input data to the tree root, then the

data is filtered and sent to a branch and then to another branch until it reaches the leaf.

The leaf is where the final decision is made, is called the Response. In this study, five

RT models were developed to forecast 1 h, 8 h, 24 h, and 7 days ahead. The first RT

model is a standalone model. This model is not fed any of the SOM output (i.e. no K

inputs) as a model input. The rest of the models (HYB-N2, HYB-N3, HYB-N4, and

HYB-N5) are hybridized models; all predictors are fed to the model every time the

model predicts the future outflow demand. Although the standalone RT model is fed

with fewer input parameters, however, all models in this group are structurally identical

in terms of the input data time span, the number of tree leaves, and the cross-

validation folds. The RT model algorithm shown in Fig. 5b was used to develop the RT

predicting model.

Model performance

The performance of the proposed models was measured based on the deviation of the

predicted outflow from the actual outflow. Both over-estimated and under-estimated

predictions were considered as inaccurate model performance, therefore, included in

error measurements. The performance was measured with: (1) Mean Absolute Percent-

age Error (MAPE) and (2) Root Mean Squared Error (RMSE). The Normalized Root

Mean Squared Error (NRMSE) was calculated and shown along with MAPE in Table 4.

The inclusion of NRMSE was to account for the variation of the means of datasets used

in forecasting the water outflow. Equations 3, 4, and 5 represent the MAPE, RMSE, and

NRMSE, respectively. Here n denotes the number of data points, Y i is the data set

mean, and Ŷi and Yi represent the forecasted and the actual water outflow, respectively.

MAPE ¼ 1
n

Xn
i¼1

Yi−Ŷ i
Yi

���� ���� ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

bY i
2
−Y 2

i

� �s
ð4Þ

NRMSE ¼ RMSE

Y i
ð5Þ

Table 4 Models overall performance

Model Model
identifier

MAPE (%) NRMSE (%)

1 h 8 h 24 h 7 days 1 h 8 h 24 h 7 days

SARIMA S-24 15.37 17.84 17.81 21.38 18.93 18.76 19.08 24.17

S-168 14.85 15.72 17.61 18.73 17.31 17.95 19.02 19.83

RT RT 11.48 12.93 13.72 16.75 12.43 13.19 17.81 21.04

Hybrid HYB-N2 08.62 09.58 11.41 13.89 10.83 12.83 14.47 18.62

HYB-N3 06.73 07.34 08.92 09.74 07.97 09.51 10.73 11.86

HYB-N4 04.97 06.03 06.57 06.93 05.54 06.86 08.73 09.83

HYB-N5 04.84 05.82 06.12 06.80 05.18 06.24 06.78 08.62
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Results and discussion
Models overall performance

The results for the three proposed models forecasting 1 h, 8 h, 24 h, and 7 days ahead are

shown in Table 4. It can be observed that the forecast in all time horizons have a relatively

better overall performance when RT, and HYB models are deployed compared to the sim-

ple linear SARIMA models. On average, the MAPE for RT model was 15% to 25% less

compared to the SARIMA models, forecasting 1 h, 8 h, 24 h, and 7 days ahead. Likewise,

HYB models had a MAPE of 35% to 70% less than SARIMA models forecasting the same

four time horizons ahead. As can be seen, the nonlinear models have outperformed the

linear SARIMA models. That is due to the following two reasons. First, the utility’s out-

flow has a nonlinear relationship over service time, where the change in water demand

per unit time is variable. RT and HYB models are naturally nonlinear models that have a

higher capability in capturing nonlinear patterns in a time series. These models perform

extensive computations to extract relationships between parameters in the current, previ-

ous, and subsequent time steps. On the other hand, SARIMA models are linear models

that linearly approximate a time series with a trend and seasonality regardless of the time

series’ nature. This process of estimating trend and seasonality parameters grows into a

harder task when the time series has a random nonlinear change in patterns. Although, it

is apparent that RT and HYB models have the advantage over SARIMA in this study, the

time series degree of nonlinearity might change that. With a lower degree of nonlinearity,

SARIMA model can better capture the time series’ trend and seasonality orders, which is

translated to a better performance in the forecasting application. Secondly, RT and HYB

models were fed with the correlated inputs mentioned in Table 2 in addition to the water

outflow. Meanwhile, SARIMA models were trained and fit with the water outflow time

series only. Even though the extra correlated parameters fed to the RT and HYB models

are a rearrangement time series of the water outflow or the temporal data, these repro-

duced time series aided models in extracting interesting nonlinear patterns.

Comparing RT and HYB models reveals that hybridizing the RT model has signifi-

cantly improved its predictivity. Fusing RT model with SOM model has increased the

accuracy of forecasting water outflow 1 h, 8 h, 24 h, and 7 days ahead. Table 4 shows

that for forecasting water outflow 1 h ahead, MAPE for the RT model dropped by 25%,

41%, 56%, and 58% for HYB-N2, HYB-N3, HYB-N4, and HYB-N5, respectively. Simi-

larly, with a small variance, MAPE for the 8 h, 24 h, and 7 days ahead forecast dropped

by 25% to 55%, 16% to 55%, and 17% to 59%, respectively. The SOM clustering model

grouped the water outflow dataset into smaller datasets with a smaller space. This has

helped the hybridized RT model in extracting patterns from spaces with instances close

in intensity.

Inspecting the HYB models divulges that the number of neurons in the SOM models af-

fects its predictivity proportionally. That means HYB models with higher number of neu-

rons performed with less forecasting error. For example, HYB-N5 with 5 neurons in the

infused SOM model had a less MAPE than HYB-N4, HYB-N3, and HYB-N2 in all fore-

casting horizons. Here, increasing the number of neurons reaches a limit where it no lon-

ger affects the model performance. In this study, this limit was five neurons, where HYB-

6 N model had approximately the same performance as HYB-N5 with a slight decrease of

less than 0.5% in MAPE. This asymptote reached by the model is due to having most of
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datasets patterns explained by other used neurons. In other words, the model at that limit

have had reduced data dimensionality to a level where the increase in information gain ra-

tio is negligible.

The last observation that can be drawn from the overall performance results in Table 4

is regarding the time horizon. Here, a forecast time horizon refers to the number of hours

ahead a water outflow is to be predicted. Water outflow is a variable function that de-

pends on a plethora of factors. These factors are, but not limited to, the number and

growth of the population, consumer type, consumption seasonality, water price, socio-

economic factors, etc. All these factors vary with time and therefore have a level of uncer-

tainty. This can be noticed in the better performance of all proposed models on shorter

time horizons. For instance, MAPE increased for all models forecasting 8 h ahead com-

pared to 1 h ahead.

Computational load

Although model overall forecasting performance is a good measure for model accuracy,

it does not incorporate model deployment complexity. Therefore, two more measures

were calculated and considered for model selection. The first measure is the Akaike In-

formation Criteria (AIC), which penalizes models that use more parameters. AIC con-

sists of two terms, likelihood and number of parameters. The second measure is the

time spent during data training steps. As a control of these two measures, all models

were built using the same tool. The computational tool used in this research was HP

Pavilion TS 14 Notebook PC with a 1.6 GHz Intel Core i5 processor and 8 GB memory.

Table 5 displays the results of AIC and training time for the seven proposed models.

AIC and training time results reveal that the SARIMA model had the lowest and

most preferred performance. SARIMA-24 has had a relatively low AIC due to the

shortest data span, 7 days, used to feed the model. SARIMA-168 with a slightly higher

AIC and training time ranked second. RT model had a 20 -fold higher AIC, and triple

training time compared to SARIMA model. This drastic increase in AIC was due to the

extra inputs fed to the model which increased the number of parameters. HYB models

had a 10% to 110% higher AIC, and 40% to 135% longer training time compared to the

RT model. Again, the addition of the SOM model to the RT model increased the num-

ber of parameters which lead to more complex model.

Table 5 Computation load of forecasting models on training data

Model Historical
data

Identifier Indicators

AIC Time (s)

SARIMA 7 days S-24 1281 13

7 days S-168 1362 16

RT 4 months RT 26,738 41

Hybrid 4 months HYB-N2 29,643 57

4 months HYB-N3 35,692 67

4 months HYB-N4 46,421 82

4 months HYB-N5 55,729 96
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Model application

Models predictivity was investigated using datasets that were not used in the training,

testing, and validating of the proposed models. Figure 6 shows the performance of

SARIMA, RT, and HYB models forecasting 1 h ahead for a held back dataset of a week-

day in November 2017. Similar to the overall performance, nonlinear RT and HYB

models have shown better forecasting performance compared to the linear SARIMA

model. Also, when RT model performance is compared to HYB models performance, it

can be seen that HYB-N5 and HYB-N4 have shown better fits over the tested time

span. Here, it can be concluded again that: (1) the RT model performed better when

fused with the SOM clustering model, and (2) the HYB model performance improved

as the number of clusters in SOM was increased.

Figures 7 presents the results of forecasting a weekend day for SARIMA, RT, HYB

models 8 h ahead. Again, HYB models performed better than SARIMA and RT models,

Fig. 6 Models forecasting water outflow 1 h ahead on a weekday in November 2017. This figure displays 1
h forecast results of the models when implemented and tested on a held back dataset for a random
weekday on November 2017. The figure shows that Hybrid models forecasting 1 h ahead have performed
better compared to SARIMA and standalone RT models. In addition, Hybrid models with more neurons
outperformed those with less neurons on the tested dataset

Fig. 7 Models forecasting water outflow 8 h ahead on a weekend-day in November 2017. This figure
displays 8 h forecast results of the models when implemented and tested on a held back dataset for a
random weekend-day on November 2017. Analogously to the 1 h forecast in Fig. 6, Hybrid models
forecasting 8 h ahead have performed better compared to SARIMA and standalone RT models. Also, Hybrid
models with more neurons outperformed those with less neurons on the tested dataset
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and HYB models with higher number of clusters showed the best performance among

proposed models.

Concluding remarks
Three models were presented to forecast a water utility outflow 1 h, 8 h, 24 h, and

1 week ahead. The main objective of this study was to investigate the influence of

fusing a Supervised and Unsupervised Machine Learning techniques in the applica-

tion of short-term water demand forecasting. This hybrid model (i.e. HYB) com-

prised of RT forecasting model and SOM clustering model. The performance of

the HYB models was assessed and compared to a standalone RT model, and a

SARIMA model. In virtue of its adequate performance, simple structure, and wide

use in the application of short-term forecasting, SARIMA model was appended as

a baseline model.

The results of this study have highlighted the following concluding remarks:

� Fusing the RT Supervised Machine Learning model with the SOM Unsupervised

Machine Learning model improved models predictivity. HYB models have shown

better prediction performance, less forecasting error, when compared to the

standalone RT model. The Mean Absolute Percentage Error (MAPE) for HYB

models was shown to be 15% to 60% less than the MAPE for the standalone RT

model.

� Increasing the number of clusters in HYB models has led to a significant decrease

in forecasting error. For example, the MAPE dropped, on average, by 25% when the

number of clusters increased from 4 (for N = 2) to 9 (for N = 3), and by 25% when

the number of clusters increased from 9 (for N = 3) to 16 (for N = 4). Including

more clusters will eventually not affect the performance after a steady state is

reached. This can be seen when HYB models with16 clusters are compared to

those of 25 clusters.

� Nonlinear models (i.e. RT, and HYB) have shown better forecasting performance

than the simple linear SARIMA model. However, they are more complicated to

build and interpret, and perform the forecast on a slower pace.

To conclude, the HYB model would be the best selection of the investigated models

if forecasting accuracy is prioritized over model simplicity. A water utility should con-

sider the implementation of HYB model in order to obtain an accurate forecast. This

significant increase in forecasting accuracy could help the water utility meet its demand

requirements efficiently, increase its service reliability and customer satisfaction. In par-

ticular, water treatment and distribution processes along with maintenance and system

development could be improved through optimized pumping schedules and storage.

Maintenance and system development could also be improved by having a better un-

derstanding of system loads. Decreasing the demand side uncertainties through accur-

ate prediction could also help the water utility avoid over−/under-loading the water

supply system. Although this paper only investigated the model performance on short-

term water demand load, the proposed model can also be applied to energy, commer-

cial, and industrial loads.
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Nomenclature
The following symbols are used in this chapter:

RT = Regression tree

SOM = Self-organizing map

ANN =Artificial neural network

SARIMA = Seasonal autoregressive integrated moving average

MAPE =Mean absolute percentage error

NRMSE = Normalized root mean squared error

SWG = Smart water grids

ARIMA =Autoregressive integrated moving average

MLP =Multi-layer perceptron

RVM = Relevance vector machine

ARIMAX =Autoregressive integrated moving average with exogenous variables

m3/hr. = Cubic meter per hour

am = Ante Meridiem (i.e. Before midday)

Qt = The current water outflow

PCC = Pearson correlation coefficient

K = The cluster number

ACF = Autocorrelation function

PACF = Partial autocorrelation function

hr. = Hour

f = Frequency

S-24 = SARIMA model with a seasonal period equal to 24 h

S-168 = SARIMA model with a seasonal period equal to 168 h

n = A number (i.e. 1, 2, 3 … etc.)

2D = Two dimensional

In = Input number n

N =Number of neurons

HYB-2 N = A hybrid model with 2 neurons in each dimension of the grid

HYB-3 N = A hybrid model with 3 neurons in each dimension of the grid

HYB-4 N = A hybrid model with 4 neurons in each dimension of the grid

HYB-5 N = A hybrid model with 5 neurons in each dimension of the grid

RMSE = Root mean squared error

Yi = Data set meanbYi = Forecasted water outflow

Yi = Actual water outflow

AIC = Akaike information criterion
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