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Abstract

A discolouration concept is proposed describing simultaneous pipe wall material
accumulation and mobilisation processes that define discolouration in drinking
water distribution systems, one of the biggest causes of customer dissatisfaction.
Validation of these mathematical forms is presented. The model formulation was shown
to maintain the mobilisation functionality of previous validated shear-stress-dependant
modelling tool, but requiring only two empirical parameters. Two distinct operational
datasets are then analysed and robust empirical model parameter calibration is obtained
utilising a refined particle swarm optimisation technique. The model is shown to make
usefully accurate simulations for flow mediated events, providing evidence of predictive
capabilities. The combined tracking of accumulation and mobilisation behaviour enables
assessment of the current and future discolouration risk posed by any pipe irrespective
of age or material, allowing pro-active, risk based planning and prioritisation of
maintenance interventions to protect the quality of delivered water.

Keywords: Water distribution systems, Water quality modelling, Discolouration, Particle
swarm optimisation
Introduction
Discolouration material is acknowledged to accumulate continually and ubiquitously

across all pipe surfaces in drinking water distribution systems (DWDS) (van Summeren

and Blokker 2017, Vreeburg et al. 2008). As a result, any maintenance intervention for

managing discolouration risk, such as disruptive invasive techniques or in-operation flow

conditioning as developed in the UK to periodically mobilise accumulated material using

controlled increases in system shear stress (Husband and Boxall 2016), can only be

considered a temporary strategy. Of operational significance therefore is the rate at which

particulate matter re-accumulates on the pipe walls, increasing the discolouration risk as

the asset condition deteriorates and the frequency at which interventions are required.

Models describing the mobilisation of material from pipe walls due to elevated hydraulic

forces exist (Vreeburg and Boxall, 2007) and have been verified in the field for distribution
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pipes and trunk mains (Husband and Boxall, 2010, Husband and Boxall 2016). However,

models of material accumulation do not reflect process knowledge obtained from oper-

ational experience and supported by extensive field and laboratory studies.

Discolouration risk is difficult to measure directly due to its origin as material on the

inside of buried pipe infrastructure. Turbidity and flow data characterising the disco-

louration response can be collected, however due to the short term sporadic and

spatially variable nature of ‘natural’ discolouration events this can be complex (Furnass

et al. 2013). However it is possible to collect discolouration data around planned events

that disturb pipe accumulated material, although these have inherent risks to water

quality and customer perceptions. Water companies therefore need a means for asses-

sing the current discolouration risk not as a complex, typically noisy flow and turbidity

time-series, but as a simple, comparable metric. In addition, strategic planning requires

a way of assessing how discolouration risk changes in the short, medium and long term

under multiple hydraulic scenarios.

With continuous material accumulation highlighting the restricted short-term value

from one-off strategies such as pipe renewal or invasive cleaning, maintenance pro-

grammes of regular managed flow increases offer a potential for long-term low cost risk

management. However, hydraulics and water quality in DWDS are difficult to charac-

terise as they are topographically complex bio-reactors with large surface areas, pre-

dominantly access restricted and with limited monitoring opportunities. Without

pro-active discolouration risk management, any increase in flow resulting from planned

or unplanned events can mobilise accumulated material. As this material represents

long term accumulation of low level background components, the hazards to water

quality extend beyond simply aesthetic discolouration and can include elevated con-

centrations such as for iron, manganese or lead, disinfection by-products and

microbial biofilm content including potential pathogens. Operational flexibility is

however paramount for the management of distribution systems and in particular

trunk mains, where failure consequences can be extensive. Water providers there-

fore need to be able to conduct scheduled maintenance, such as to treatment works,

pumping stations and service reservoirs, and also react promptly when such assets

fail. These need to be conducted while minimising any negative impact on water

quality. It is therefore vital that discolouration processes are well characterised to

aid with their management. Efforts to achieve this have however been historically

impeded by the heterogeneity of DWDS and by the practical requirements of

pipe-specific discolouration studies.

It is difficult to characterise well the biofilms/layers that accumulate on the walls

of DWDS without disturbing them (Douterelo et al. 2016, Husband et al. 2016). A

model capable of describing material mobilisation and accumulation processes,

plus the contributing factors, would equip water providers with the means to bet-

ter schedule and design both flow conditioning and general maintenance pro-

grammes. This would reduce the risk of customers being supplied with discoloured or

poor quality water and by understanding return periods would also facilitate whole

life costing of those programmes. This paper presents a model that combines

accumulation and mobilisation processes and its application to field experimen-

tal data. Implementation in a software Application Program Interface (API)

allowed validation by calibration to real world data.
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Background
The detection of discoloured water at customers’ taps has been shown to be predomin-

ately the result of a change in hydraulic conditions within the upstream DWDS mobi-

lising wall bound particulate material (Husband and Boxall, 2010), as shown in Fig. 1.

Proactive, operational strategies monitoring the turbidity response to managed flow

events have evidenced this as a cost-effective means for reducing the likelihood of dis-

colouration events (Husband and Boxall, 2016). In addition, discolouration modelling

has been validated as capable of predicting the turbidity response, due to material

mobilisation, when preceding peak flows are exceeded.

Over time continual particulate material flux in the bulk water causes material accu-

mulation on the internal surfaces of DWDS in cohesive layers (Husband and Boxall

2011). The rate of accumulation on pipe walls is a complex function driven by multiple

processes including corrosion, adhesion and microbial growth (Abe et al. 2012,

Matthieu et al. 2014, Mounce et al., 2016). With a heterogeneous and complex compo-

sition, wall-bound discolouration material does not have a single binding shear

strength. Most pipes in operational networks do not pose a discolouration risk on a

typical daily basis, indicating that accumulated material has a strength versus quantity

profile with the lower bound of the strength range defined by the prevailing shear stress

i.e. discolouration material is conditioned by the usual pipe hydraulics. The strength

profile of wall-bound material can be studied by increasing the shear stress incremen-

tally above the ‘background’ and measuring how much material (the turbidity response)

is mobilised (Husband et al. 2008). One way to extend this investigation to examine

how material then accumulates over different strength ranges is to then repeat this

exercise after a defined period (Husband and Boxall, 2011).

Modelling provides a way of encoding system state information and transaction rules

in an abstract form that allows for extrapolation. For example, the above understanding

of material mobilisation may be captured by describing mobilisation of wall-bound
Fig. 1 The interior of a ductile iron main that was drained down to repair a leak. Note the thin (particulate)
material coating the complete pipe wall, as well as larger more stable corrosion tubercles
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material occurring when the applied shear stress, τa, exceeds the shear strength, τ, of

bound material. This is the basis of the empirical Prediction of Discolouration in Distri-

bution Systems (PODDS) discolouration model (Boxall et al., 2001). This model does

not attempt to model corrosion processes, biofilm development, suspended iron flocs

or chunks of biofilm directly; instead, material mobilisation is considered to be the

mechanism by which turbidity causing, homogeneous material can move between being

bound to the pipe wall and being a wash load suspended in the bulk water. The

PODDS model estimates the amount of material (bound to the pipe wall) by assuming

an equilibrium state with the normal daily hydraulic conditions and then simulates the

turbidity response that would result from an excess shear stress event. PODDS model

parameters are empirical, estimated through calibration to measured data. Flow trials

(flushing of distribution pipework or raising flows in larger diameter trunk mains) are

used to generate the turbidity, flow and headloss data required for such calibration.

Headlosses can either be estimated using a pipe roughness or measured directly during

trials, facilitating concurrent hydraulic network model calibration. PODDS model

parameters have demonstrated transferability between sites with analysis showing them

sensitive to pipe diameter, pipe material and source water (Boxall and Saul, 2005).

While the PODDS model has been validated to represent mobilisation behaviour, it

does not describe the material accumulation processes observed in both field and

laboratory studies. In Furnass et al. (2014) a new model, the Variable Condition

Discolouration Model (VCDM), was proposed to overcome this shortcoming. It is pos-

tulated that wall-bound material with τ ≤ τa is eroded whilst simultaneously material

for which τa < τ < τmax accumulates (where τmax is the maximum possible τ with

which material binds to the wall). The model therefore tracks the relative amount of

discolouration material bound to the pipe wall over time at each of a number of shear

strengths. A shear-strength-variable yet time-invariant mobilisation model (see Fig. 2)

is combined with the accumulation model as a) it allows for non-serial layer mobili-

sation so can account for spatial heterogeneity in material composition; and b) it can

ensure that the mobilisation rate is a function of excess shear stress. The PODDS
Fig. 2 A mobilisation model where all shear strengths erode simultaneously at a rate that is constant with
time for each shear strength but varies between shear strengths, with the weaker material eroding more
quickly as driving force (τa-τ) is greater
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model captures mobilisation as a process progressing in series from strong to weak

layer, in series. Whereas observation of wall bound material is shown to be heterogeneous

at the micro scale (Fish et al. 2016 and Fish et al. 2017), with different strength material

exposed simultaneously. Figure 2 attempts to capture this, showing how the distribution

of amount of material (φ) across different strengths (τ) would be simultaneously mobi-

lised, but at decreasing amounts, due to each time step of an imposed excess shear stress.

Modelling the accumulation rate could be achieved using a process model, taking

account of many factors such as corrosion, temperature and biofilm growth. This

however would require a sufficiently-detailed understanding of the inter-dependencies

(a set of physical, chemical and biological reactions per distinct environment, with the

stoichiometry and kinetics/equilibria being characterised for each biological and

chemical reaction), hence likely to be difficult and impractical. For the purposes of

this work, material accumulation is considered to be a simple, empirical rate that

is a scalar and time-invariant. As further data and process knowledge becomes

available, this rate-based model can be refined through decomposition into empi-

rical and process-aware sub-models.

The output from the mobilisation and accumulation model is a rate of material

release from the pipe wall into the bulk flow. Together with an understanding of system

hydraulics, this can then be fed into existing water quality models to account for advec-

tion and mixing and to calculate turbidity at any downstream location. A series of pipe

lengths with differing hydraulic or asset characteristics can collectively be modelled in a

‘daisy-chained’ fashion: the turbidity predictions from modelling the most-upstream

pipe are supplied as input when modelling the change of state and turbidity for the

next pipe downstream, and the output from that sub-model is used as input when

considering the next pipe downstream etc. (see Fig. 3).

The VCDM model has three parameters, a relative mobilisation or erosion rate factor

βe, an accumulation or regeneration of material rate βr, and a scaling factor α for

converting from relative to absolute quantities of discolouration material. The wall state

boundary condition for t = 0 is the relative material quantity per tracked shear strength,

which is a non-trivial monotonically-increasing function of τ. The material condition

function φ (τ,t) is the relative amount of discolouration material bound to the pipe wall

with shear strength τ at time t. τ is a vector property, in that it is used to track the
Fig. 3 Discolouration material release and propagation can be modelled in heterogeneous pipes by
supplying the output of each sub-model as an input to the downstream sub-model
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range of material strengths at every position on a pipe, and φ (τ,t) ∈ [0,1] where 0

corresponds to complete depletion (no material) and 1 to maximum accumulation.

VCDM detail and mathematical formulations can be found in Furnass et al. (2014) and

Furnass (2015). In these publications formulation verification was conducted with artificial

data and limited data from operational networks and using manual calibration. The pro-

posed model however still requires validation, primarily to explore the error in predictions

made using calibrated models and continuous flow data. The proposed model is only of

greater value than PODDS if both mobilisation and accumulation mechanisms can be

shown to be valid. The proposed model of material mobilisation differs from the validated

PODDS mobilisation mechanism so it must be independently validated.

The aim of the research reported is to calibrate and validate a formulation that

attempts to describe the continual processes of material accumulation and mobilisation

(due to hydraulic changes) within DWDS and hence inform asset management for the

control of discolouration. Specifically, the paper presents information on:

� Confirmation that the proposed formulation, with only two mobilisation

parameters, retains functionality to describe material mobilisation as currently

described by the PODDS model, requiring three parameters.

� Implementation of the proposed formulation within a Python environment, in

particular integration with optimisation algorithms to enable efficient and

repeatable calibration and automated systems to identify periods of interest from

long time series data.

� To provide evidence of the ability of the model to describe the long term

behaviour of both continual material accumulation and mobilisation within a

trunk main through calibration, and to provide initial validation of predictive

simulations once calibrated.

Methods
Validation of the discolouration mobilisation model can be achieved using field data

obtained during the flushing of pipes. Flushing durations are sufficiently short relative

to the time required for material accumulation, irrespective of if this is within larger

trunk mains or smaller diameter District Meter Area (DMA) pipes (Husband and

Boxall, 2016), that the accumulation can be assumed to be negligible over the duration

of a flush. If flushing is repeated at suitable intervals the processes of accumulation

may also be investigated. The relationships between the quantities explicitly referenced

by the proposed VCDM are shown in Fig. 4. Temperature and fluid density are not

explicitly included in the model as the impact of variation in those factors in

DWDS hydraulics is considered negligible. Temperature / seasonal variations are

known to influence material accumulation processes, but are not captured in the

datasets available here.

The first stage in the confirmation of the formulation was the selection and imple-

mentation of search and optimisation routines to enable automated calibration. Key

functionality sought was comprehensive exploration of prescribed parameter space,

efficiency and repeatability. Automated functionality was also developed to enable iden-

tification and tagging of periods of interest in long time series flow and turbidity data.

This helped enable visual inspection to focus on periods of interest, and could potentially



Fig. 4 Sequence calculations implemented to perform turbidity simulations. Darker shading indicates VCDM
aspects leading to downstream (ds) node observed turbidity (T). Lighter shading indicates inputs and
calculations that are standard in 1D network modelling software. ks: pipe roughness; S0: hydraulic gradient;
τa: shear stress; t: time; f: Darcy Weisbach friction factor; Re: Reynolds number; Q: flow; D: internal pipe
diameter; ρ: fluid density; βe, βr and α: VCDM parameters; ϕ (τ, t): relative amount of material on the pipe
wall with strength τ at time t; ϕ (τ, t0): relative amount of material on the pipe wall with strength τ at time
t0; dN (t) /dt: rate of material release per unit area of pipe wall; L: pipe length; Tus: turbidity at the upstream
node; Tds_pred: predicted turbidity at the downstream node. indicates a model input. indicates a
model process. Light shading indicates hydraulic model inputs and processes, while dark shading indicates
VCDM specific ones
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be used to focus calibration by biasing fitting to these periods. The second stage was to

use the automated calibration routines to confirm the mobilisation functionality of the

new formulation. This is presented for four short duration DMA flushing responses as

first reported in Boxall and Saul (2005) and Husband et al. (2010). The ability of the new

model to simulate long term continual accumulation and mobilisation was then assessed,

requiring long time series flow and turbidity data. This is presented here as calibration to

two different long term data sets. The second data set was sufficient to enable segregation

into training and testing data allowing validation. Sufficient was judged to be a time series

that contained a sequence of at least 5 clear mobilisation events with sufficient periods

between for measurable (in terms of turbidity response when mobilised) accumulation to

have occurred between them for training, and then a further 3 events for testing. The

periods and magnitude necessary for this are system and events specific.

Automated event identification

Identifying the times when turbidity events occurred or are most likely to have

occurred from continuous turbidity and shear stress datasets covering extended time

periods is not straightforward and automation is therefore highly desirable. The moti-

vation for identifying the times of likely events is that the data over these periods

provide a response that is critical to facilitate calibration. Model validation can there-

fore be tailored to better qualify/quantify the ability of the VCDM to characterise the

processes of interest by focussing on these disjointed subsets of the time-series dataset.

Turbidity events due to mobilisation within a pipe are most likely when the pipe shear

stress exceeds recent maximum. The set of likely turbidity events of a given dataset

was identified as follows:

1. For each timestamp t, mark t as being an event time if τa (t) exceeds the maximum

of the previous t_win seconds;

2. (Optional) All identified events that correspond to just a single timestamp should

be classified as not being events as they could just be due to measurement error;

3. For all remaining events, consider all timestamps within n_turnovers×tt after each

event to be part of that event, thus allowing for discolouration material

propagation following the flow increase.
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Particle swarm optimisation

Evolutionary optimisation techniques such as genetic algorithms (Holland, 1992) mimic

the competition inherent in natural selection to iteratively move towards an optimal

candidate solution. Swarm optimisation methods are also stochastic but use collabo-

ration rather than competition between candidate solutions to converge on the global

optima. One of the more commonly-used techniques is particle swarm optimisation

(PSO) (Kennedy et al., 2001).

In PSO, each dimension corresponds to an optimisation problem variable (model par-

ameter). For the bird flocking problem, the objective function that needs to be mini-

mised could take a set of coordinates in three-dimensional space as its three

parameters and return the reciprocal of the concentration of flies at those coordinates.

Initially a number of birds or particles (typically between 20 and 50 (Eberhart and Shi,

2001)) are assigned random positions and velocities within the problem space. The

coordinates of each bird represent a candidate solution. The birds then move about this

problem space over a number of timesteps. At each timestep each bird calculates a new

velocity based on three factors (Floreano and Mattiussi, 2008):

� Inertia: its current velocity vector

� Nostalgia: the problem space position in the bird’s memory since t = 0 where the

fitness value was greatest;

� Societal influence: the position of the neighbouring bird with the best fitness at the

current timestep (birds may use calls to communicate their current fitness values to

each other).

PSO has been used to design distribution networks with optimal topologies and pipe

diameters (Suribabu and Neelakantan, 2006), develop optimal reservoir management

strategies (Reddy and Nagesh Kumar, 2007), learn the optimal parameters of a lake

water quality model (Campbell and Phinn, 2009), parameterise hydrological and hydro-

geological flow models (Zambrano-Bigiarini and Rojas, 2013) and learn formula param-

eters for solute mixing at DWDS junctions (Yu et al., 2014).

Two advantages of PSO over evolutionary optimisation approaches such as genetic

algorithms are that PSO is purportedly more efficient than genetic algorithms and the

key algorithmic components can be encapsulated in very little code (Kennedy et al.,

2001). A possible disadvantage of PSO is that it is not naturally suited to optimising

problems involving categorical variables (Floreano and Mattiussi, 2008). However, with

no categorical input parameters, as with VCDM, PSO is desirable due to its simplicity

and efficiency of design, implementation and execution.

In the present work, model parameters were fitted using a robust PSO metaheuristic,

as sensitivity analysis showed that there were many similar ways in which model

parameters and measurable/calculable properties, such as flow and pipe diameter, could

influence the shape and scale of time-series model outputs (Furnass 2015). The PSO

objective function was the error between time-series turbidity observations and predic-

tions, optionally calculated only at times when erosion events were likely. The dissimi-

larity metric used in the objective function is the integral of squared errors (ISE) and

was chosen as it is moderately sensitive to the magnitude of transformations, is very

insensitive to noise, is simple to calculate (Eq. 1) and is dimensional.
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ISE Tobs; Tpred
� � ¼

X
Tobs tð Þ – Tpred tð Þ� �2 ∀t ∈ tcompare ð1Þ

where tcompare is the set of times at which errors are to be calculated (which do not

need to be contiguous).

Implementation

For the purposes of validating the proposed model for a single pipe, a bespoke software

library was developed in Python (Lutz, 2011). Python is suitable for this task as it is

interpreted and dynamically typed, facilitating rapid prototyping, data exploration and

experimentation, yet can interface with statically typed, compiled extension modules

for expediting computationally-intensive tasks (e.g. via Cython (Behnel et al., 2011)).

Python was thus considered to offer the best balance of efficiency and ease of develop-

ment and the greatest flexibility with respect to model fitting and sensitivity analysis.

The freeware pyvcdm Python package implementation provides VCDM coding and

development functionality with which discolouration material release models can be

instantiated then executed for a given time-series before modelling advection and

mixing for that process i.e. the wall state change and material release code is largely

decoupled from the advection and mixing code. This decoupling facilitates VCDM

coding as an add-on into existing hydraulic software.

An implementation of PSO in Python, pyshoal was developed to provide the

features and satisfy the model requirements and provides a simple API. Once instan-

tiated, an optimisation run continues until convergence tolerances are satisfied for a

number of iterations or a maximum number of iterations are reached. The outputs

following a run are the best objective function parameter values found during the run,

the value of the objective function given those parameter values and the number of

iterations. The software allows for the optimisation of an arbitrary objective function

(which can take any number of parameters) and can execute objective functions

in parallel using multiple processes for reducing the execution time of a single

optimisation run.

The calibration of model parameters can be formulated as an optimisation problem

to be solved in an automated fashion:

� The objective function to be minimised is an appropriately sensitive scalar

measure of the dissimilarity (the integral of squared errors was used as the metric)

between turbidity observations and model instance turbidity predictions over the

calibration period;

� The parameters to be optimised are VCDM model parameters βe, α and βr (unless

one is confident that the duration of the simulation period is negligible compared

to the time required for full regeneration in which case only βe and α);

� The optimisation constraints are independent parameter bounds for βe, α and βr:

all three parameters must be positive and finite.

The approach used for calibrating the model parameters is to fit all three parameters

simultaneously given static and time-series observations of bulk water properties, a

PSO configuration (including parameter bounds) and known initial wall state boundary

conditions (ϕ (τ, t0)). This approach, as illustrated in Fig. 5, is referred to as



Fig. 5 A data flow chart showing how all three VCDM parameters can be fitted to data simultaneously
using PSO (FIT_SIMULT method)
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FIT_SIMULT. Options for fitting/estimating initial wall state boundary conditions are

discussed in Furnass (2015).

The PSO configuration options used when fitting the proposed model to data are

specified in Table 1 (excluding the specific parameter space bounds and convergence

tolerance values as these are more case-specific). As PSO is a non-deterministic meta-

heuristic that is likely but not guaranteed to find the global optimum, each of this set

of fitting tests was attempted up to three times to achieve a satisfactory fit and confirm

that an optimal, repeatable solution was found.
Fitting VCDM mobilisation to four DMA flushing events

The mobilisation and accumulation processes operate over dramatically different time

frames. Mobilisation and associated change in pipe wall bound material and turbidity

response is in terms of minutes, whereas accumulation processes and associated change

in pipe bound material layer state are in terms of weeks and months. Hence by consi-

dering only short time period mobilisation events the effects of accumulation, and the

associated model functionality, can be ignored. Therefore the mobilisation functionality

can effectively be validated independently of the accumulation function.
Table 1 Generic PSO configuration used when fitting the proposed model to data

Option Choice and notes

Number of particles 25. Smallest square number in the recommended range of 20–50. Must
be a square number if using Von Neumann neighbourhoods.

Parameter space box bounds (valid
parameter ranges)

(No generic values as case specific)

Particle initialisation Uniformly distributed within parameter space box bounds (no
justification for using more complicated methods)

Velocity component weights Inertia weight decreases linearly from 0.9 to 0.4 over the total number of
optimisation run iterations; nostalgic and societal weights are both 2.1

Problem space boundary handling Restrictive, damping boundary conditions

Maximum particle velocity The absolute size of the region bounded by the box bounds.

Particle neighbourhoods Social rather than geometric; exactly four neighbours per particle (Von
Neumann lattice)

Maximum number of iterations 500

Convergence tolerance check Algorithm terminates before the maximum number of iterations if the
‘best’ position in the swarm changes by less than a similarly-dimensioned
tolerance threshold over five PSO iterations. Tolerance thresholds not spe-
cified as case-specific.
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The VCDM was fitted to four independent flushing events to validate the mobilisa-

tion functionality across a range of pipe materials, pipe roughness and source waters.

The four selected flushes were from DMA’s around the UK and were first presented

in Boxall and Saul (2005) and later in Husband et al. (2010) with corresponding

PODDS model calibrations. The four flush examples (PODDS-CI1, PODDS-CI2,

PODDS_PE1, PODDS-PE2), shown in Fig. 6, were used to explore the accuracy and

precision (repeatability) with which the VCDM can be fitted and the quality of

model fit (using a relative dissimilarity metric) compared to the corresponding

PODDS calibrations.

The VCDM was calibrated using each of the DMA flushing datasets by using the

FIT_SIMULT method to fit the mobilisation parameters βe and α. The βr parameter

was set to 0 s−1, simplifying the fitting process as for these short duration simula-

tions the accumulation effects would be negligible. Prior to flushing, according to

company records, the pipes effected had only experienced a regular daily flow pattern

for the preceding years so could be considered as ‘previously undisturbed’. As a result,

the initial wall state boundary conditions were fitted using a single cusp approach: the

relative amount of material at the start of the simulation was polarised around a

single shear strength τc, which, like βe and α, was fitted by FIT_SIMULT. Here τc is

conceptually similar to the initial layer strength term in the PODDS model which was

also derived from the preceding peak flow from the daily pattern. A fourth quantity

was fitted by FIT_SIMULT, this being the maximum shear strength, τmax, with which

material can be bound to the walls of pipes. In operational terms τmax is effectively a

‘self-cleaning’ boundary, that is the strongest force with which erodible material can

accumulate at the pipe wall; for pipes experiencing daily forces in excess, material

accumulation is mitigated. As with the prior PODDS simulations, τmax was only fitted

for the PE pipes as no evidence of a maximum shear strength has been found in CI

pipes (Husband et al. 2010).
Fig. 6 Selected DMA flushing data showing imposed flow rate (dashed line), measured turbidity response
(crosses) and PODDS model simulation results (solid line)
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Fitting the VCDM to trunk main (TM-NR)

The most informative method for validating the accumulation mechanism and eviden-

cing its practical value is to assess whether it can represent a series of turbidity

responses identified as due to hydraulic mobilisation during an extended time period

from a relatively homogeneous pipe length. In this first case study, the model was fitted

to a 22-month dataset with a number of shear stress events and where the spacing

between events was such that significant accumulation could occur. As part of an inte-

grated network these events where in response to network demands and coordinated

from a central control room. Trunk main TM-NR is a 15 km large-diameter (800 mm),

lined steel trunk main that is situated in the north-east of England supplied with

surface water. The main runs between a break pressure tank (BPT) and a service

reservoir (SR) see Fig. 7.

After pre-processing to remove unrealistic flow values such as during flow meter

maintenance and standardising to SI units, the dataset from trunk main TM-NR was

used for calibrating and validating the VCDM is shown in Fig. 8.

The automated event detection method was applied to the TM-NR dataset and

identified increased shear stress using a time window of fourteen days and the turbidity

response highlighted for a propagation duration of five pipe turnovers. Figure 9 shows

a temporal zoom of Fig. 8 with the identified turbidity responses due to increases in

shear stress highlighted in red. Using this technique, a total 39 events were detected

in this dataset. The three model parameters (βe, α and like βr) were fitted using the

FIT_SIMULT method. Unlike calibration of the mobilisation process for the flushing

operations with the initial wall state boundary conditions (ϕ (τ, t0)) polarised around

a defined peak daily flow, the more variable trunk main flow history can generate a

range of layer states. Fitting options are discussed in Furnass (2015), whilst in practice

the simplest method as applied here sets initial wall state material as greater than

would be expected with the opening flow data. This is rapidly mobilised (βe> > βr)

with the initial week’s simulation results accepted as poor while a realistic wall state

description is defined.
Fig. 7 A network schematic showing the location of trunk main TM-NR in relation to the supplying water
treatment works (WTW) and various service reservoirs (SRs) and break pressure tanks (BPTs). The schematic
also shows the locations of continuous flow (Q) and turbidity (NTU) monitoring equipment



Fig. 8 Flow (top plot) and turbidity from trunk main TM-NR used for calibrating and validating the VCDM.
Note that the upper bound of the turbidity y-axis scale has been set to 1 NTU to show the variation
between mobilisation events of the turbidity of the WTW finals (Twtw_obs) and the turbidity at the
downstream end of TM-NR (Tds_obs)

Fig. 9 Correlation between shear stress increases identified using 14 day time window (top plot) and
subsequent 5-turnover turbidity response (red crosses superimposed on downstream turbidity, bottom plot)
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Fitting the VCDM to trunk main (TM-WB)

The second trunk main case study, like the study of TM-NR, made use of a multi-year

dataset. Unlike TM1 however there is little demand driven variation, as a result planned

interventions featuring managed flow trials were instigated to investigate the practical

application of the concepts described by the VCDM. Also unlike TM-NR which is a

surface water supplied trunk main, TM-WB is supplied with treated ground water and

runs between two SRs in the south-west of England. The reach referred to as TM-WB

is a series of mains of varying materials (AC and unlined DI), with changing diameters

and flows due to there being take-offs along its length (see Fig. 10).

Operators of this network wished to be able to support resilience flows should

additional demand be required in the event of a WTW fail, SR fail or major burst, without

there being a negative impact on water quality. To achieve this an increase from the initial

(pre October 2009) operating maximum of 1100m3 day− 1 to 2800m3 day− 1 was identi-

fied. A number of previous discolouration events associated to hydraulic triggers in this

trunk main had indicated that there was a significant risk of discolouration. The planned

and monitored trials reported herein covered a period were therefore used to investigate

the behaviour of TM-WB to flow increases and to determine if an in-situ hydraulic strat-

egy could be applied to facilitate this resilience work.

From June 2008 investigations commenced with concurrent flow and turbidity moni-

toring trials. During flow increase trials that were predicted to mobilise significant

quantities of material the downstream reservoir was isolated for later discharge to safe-

guard the downstream network. The data set with large flow changes due to resilience

targeting would help confirm the mobilisation functionality of VCDM whilst the

varying periodic returns was ideal to validate the accumulation functionality. Once

resilience had been achieved it was planned that the flow in the main would be perio-

dically elevated back up to the target level to maintain resilience by removing any fresh

material accumulation. To facilitate this an actuated valve and permanent turbidity

meter were later installed on the inlet to the downstream SR for accurate and remote
Fig. 10 A network schematic showing attributes of trunk main TM-WB; AC or unlined DI, length (L) per
section, internal diameter (D) and the roughness (ks; values taken from a calibrated hydraulic model). Take-
offs along the length with range of demand flows per node, the type of flow profile (domestic or stepped)
and the duration over which the flow profile patterns repeat
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flow control and future flow conditioning. Turbidity observations were logged at 15

min via Supervisory Control And Data Acquisition (SCADA) from the date of commis-

sioning. Some of the key events in the history of TM-WB regarding discolouration risk

management are shown in Table 2.

After time series assembly, the dataset was available for calibrating and validating

the VCDM using data from October 2009, capturing the flow trials as shown in

Fig. 11.

The model was fitted to the dataset using the same settings used when fitting the

TM-NR dataset. The FIT_SIMULT method was executed three times with the same

inputs to assess the repeatability of the PSO fitting process.
Results
Results of fitting the VCDM to DMA flushing events

The results of the five FIT_SIMULT runs for VCDM fitting to the four DMA flushes

are presented in Fig. 12 and Table 3.

The VCDM mobilisation model fitted well to the first three datasets. The best corre-

lations between predictions and observations were similar for the VCDM and PODDS,

based on visual comparison of Figs. 6 and 12. Direct numerical goodness of fit com-

parison is not presented as it is not considered valid due to differences in implemen-

tation of PODDS from within EPANET network modelling and VCDM for single pipe

lengths. Figure 12 shows the VCDM is capable of simulating mobilisation functionality

across different pipe materials and source waters. The ability to fit the fourth dataset,

PODDS-PE2, is hampered by data quality. This is due to elevated turbidity during the

first step in this trial that the VCDM model was unable to replicate as part of the

complete sequence. For the second and third flow increments VCDM simulations are

arguably better than the original PODDS results. The difficulties of fitting this data

were also observed in Husband and Boxall (2010), who noted this elevated initial
Table 2 Key events in the history of trunk main TM-WB. Note that during the flow trials turbidity
was often recorded at a high temporal resolution but the flow measured by the meter at the
downstream reservoir meter continued to be recorded at 15 min (via SCADA)

Date Comment Tds_obs monitoring

2008-08-06 Trial 0 Discrete sampling at downstream
reservoir sampling tap

2009-09-27 Flow trial 1 Δt = 10 s; N5 and SR2 sampling tap

2010-12-07 Flow trial 2 Δt = 900 s

2010-12-14 Flow trial 3 Δt = 10 s

2011-01-18 Flow trial 4 Δt = 11 s

2011-02-01 Flow trial 5 Δt = 10 s

2011-06-21 Flow trial 6 Δt = 11 s

2012-03-08 Permanent turbidity meter commissioned for SR2 inlet Δt = 60 s

2012-03-13 Permanent turbidity meter connected to telemetry system Δt = 900 s via SCADA from that date
onwards

2012,mid-Sept Main drained down to repair a leak. This permitted the
inspection of the internal surface

N/A



Fig. 12 Results of fitting the VCDM to four DMA flushing datasets. Tus and Thyd_91_obs are the turbidities
observed at the upstream end of modelled pipe reaches, Tinter_obs are turbidities observed at intermediate
points along the mains and Tds and Tflush_wo_obs are the turbidities at the downstream extent of the
modelled pipes. Tds_pred_i (for i ∈{0 … 4}) are the turbidity predictions generated by five PSO runs per
dataset (sometimes sufficiently similar such that only Tds_pred_4 appears to be plotted)

Fig. 11 Shear stress and measured downstream turbidity dataset from the DI part of trunk main TM-WB.
The days on which flow trials 1 to 6 (see Table 2) were conducted are shown as dashed lines with
continuous turbidity data available from March 2012. Note y-axis is up to 60 NTU as a valve issue at the
monitoring reservoir during trial 3 resulted in a short duration but extreme 50 NTU turbidity spike
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Table 3 Average and standard deviation results of fitting the VCDM to the PODDS-CI1 dataset five
times using PSO. The fitted variables were the βe and α VCDM parameter values, the maximum
layer strength, τmax, and the initial shear strength, τc. Also shown is the relative similarity between
prediction and observation time-series using the Nash Sutcliffe (Model) Efficiency Index (NSEI) and
the number of iterations the PSO algorithm took to converge. 4* shows data after selection due to
data quality considerations

Flush Value βe α τmax τc NSEI Iterations

1 average 6.41E-04 0.6 N/A 1.07 0.89 164

1 SD 4.47E-07 0.0 N/A 0.03 0.00 53

2 average 5.00E-04 0.6 N/A 4.11 0.74 173

2 SD 8.71E-06 0.0 N/A 0.35 0.00 31

3 average 1.60E-01 0.5 2.3 0.67 −0.21 176

3 SD 3.32E-01 0.1 1.0 1.49 1.32 70

4 average 2.26E-03 71.8 6.2 3.34 −0.64 186

4 SD 3.33E-03 155.8 2.7 4.55 0.93 80

4* average 1.01E-03 0.4 5.7 0.02 −0.08 212

4* SD 1.77E-04 0.1 3.4 0.01 0.28 74
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response is a likely consequence of disturbing the system when cleaning the hydrant

prior to attaching monitoring equipment. The overall results therefore support a good

general fit between VCDM and PODDS simulation and measured response to all pipes

investigated. The fitting process was repeatable when the data quality was good, con-

firmed by the small parameter ranges for three out of the four cases. However, when

the quality was suspect, repeating FIT_SIMULT multiple times and visually inspecting

the bias of the fits allowed some confidence in parameter estimation. Data quality was

assessed subjectively by looking at the distinct nature of both the hydraulic disturbance

and the turbidity response relative to background flow and turbidity. Signal to noise

approaches with metrics were tried, but a more complex process is required to capture

what is currently an expertise based assessment.
Results of fitting the VCDM to TM-NR

FIT_SIMULT parameters for the fitting approach are shown in Table 4, as are the ISE

and R2 correlation metrics and the reciprocal of the (mean or constant) βr, expressed in

years. There was no difference in any of these values for 3 repeated optimisation runs.

Figure 13 provides 6 (from 39) randomly chosen event examples, identified using the

automated approach.

Although the R2 for the full times series is only 0.311 it should be noted that the data

set is dominated by near zero turbidity data with only small errors over this period

dominating the metric. Visual assessment of turbidity simulations during the major

shear stress events indicates that the model does represent the key discolouration

events. There were however periods with less correlated fit and turbidity events that

the model could not account for. There are several possible reasons for this, including:

the net turbidity response using Tds_obs rather than calculated from both Tus_obs and

Tds_obs so material imported from upstream was not accounted for; the flow monitoring

not recording short duration events due to fifteen-minute logging, but the response



Table 4 Details of the best model calibration fits for all DWDS pipe lengths modelled. The first set
of parameters for each pipe system is the result of trying to fit to the earlier part of the flushing
phase and the second set from trying to fit to the later part

Pipe(s) Material D [mm] βe βr α β−1r (yrs) dτmax bτc R2 NSEI

PODDS-CI1 Unlined CI 95 6.41 × 10−4 N/A 0.593 N/A N/A 1.058 – 0.889

PODDS-CI2 Unlined CI 76 (51) 5.038 × 10−4 N/A 0.585 N/A N/A 4.241 – 0.74

PODDS-PE1 PE 89 1.123 × 10−2 N/A 0.504 N/A 1.779 0.005 – 0.385

PODDS-PE2 PE 72 8.79 × 10−4 N/A 0.544 N/A 3.954 0.006 – 0.181

TM-NR Lined steel 800 7.650 × 10−5 1.717 × 10−8 5.472 1.846 N/A N/A 0.311 –

TM-WB Unlined DI 344 3.41 × 10−4 3.500 × 10− 8 8.251 0.905 N/A N/A 0.709 –
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being evident in the turbidity responses. Although the mobilising hydraulic event is

too short to be captured at 15 min resolution, material is still mobilised and propa-

gated downstream. Without confirmation of possible short-term hydraulic events, the

model is unable to predict this turbidity response. This then has knock on effects into

the next event as the amount of accumulated material will be overestimated. The

accumulation rate indicates full material accumulation, or maximum discolouration

risk, in ~ 1.8 years.
a) b)

c) d)

e) f)

Fig. 13 VCDM fits to trunk main TM-NR (three identically configured PSO runs)
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Results of fitting the VCDM to TM-WB

Calibration

FIT_SIMULT parameters from the fitting approach applied to TM-WB are shown

in Table 4. Results for repeated optimisations are identical other than slight va-

riation in number of iterations (104, 99, 109). The parameters identified by the

three repeat runs are consistent with a reasonable R2 = 0.7 correlation with slightly

transformed observations.
Prediction

The accuracy/validity of the calibrated model was explored by predicting the turbidity

response over the part of the dataset not used for calibration (after trial 6 on

2011-06-22 at 09:12:17 to 2013-10-17 at 13:00:00, approximately 848 days). The values

of φ (τ, t) from the final time step of the calibration simulations (see Fig. 14; no obser-

vable variation between runs) was used as the wall state boundary condition when

simulating from 2011 to 06-22 at 09:12:17 onwards. The relationship between shear

strength and relative material quantity at this time is not trivial compared to the

PODDS model that is defined by a single value. This supports the VCDM design

decision of allowing relative material quantity to vary freely (or at least monotonically

increasingly) with shear stress.

The correlation between Tnet_est and Tnet_pred over this period was not as strong

(R2 was 0.041 when considering timestamps where Tnet_est was not null) as for the

period used for fitting the model. Figure 15 provides a random selection of event

examples. As with TM-NR these figures show visually acceptable simulation results

around events, while the correlation metrics are dominated by small errors over the

majority of the near zero turbidity data.

Fitting the model to six distinct flow trials in TM-WB, the FIT_SIMULT method

proved to be highly repeatable, both in terms of identified parameter values, and net
Fig. 14 Trunk main TM-WB: the relative material quantity versus shear strength relationship at the end of
the VCDM fitting attempt



a) b)

c) d)

Fig. 15 Predicting turbidity in trunk main TM-WB using the model calibrated during the fitted attempt. Red
crosses are flow events, identified by an automated method, that are likely to cause material mobilisation
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turbidity profiles with an accumulation rate of 0.9 years. Although reasonable, model fit

could have been improved had upstream turbidity observations been available for

determining which turbidity increases were due to imported material.
Results summary

Details of the best calibration fits for all six DWDS pipe lengths modelled are shown in

Table 4. The model was able to represent DMA mobilisation events in unlined CI pipes

well. The fits to mobilisation events in plastic DMA pipes were not as good, even if the

maximum shear strength is explicitly limited, but the same was also true for the

PODDS model (Husband et al. 2010).
Discussion
An empirical model is preferable to a process derived fully deterministic model given

the large number of factors influencing discolouration. The material quantity versus

shear strength relationship is considered to be sufficiently complicated for it not to be

possible to learn model structure solely from data through empirical machine learning.

The most suitable approach is therefore suggested to be a grey-box empirical model

consisting of anthropogenic formulations that have been informed by multiple field and

laboratory studies.

The VCDM is shown to be able to represent mobilisation events as well as the

field-validated PODDS discolouration model. It is therefore proposed that the VCDM

succeeds the PODDS discolouration model: it provides the same functionality with
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fewer parameters and also includes an accumulation mechanism that far more closely

resembles observed behaviour. The complexity of the VCDM wall state model is greater

than that of the PODDS model, but only as complex as is required to represent the

observed characteristics of material mobilisation and accumulation processes.

By understanding factors influencing accumulation, mitigating steps in treatment or

chemical dosing can be investigated with the potential to improve future water quality

and reduce operating costs. It might be reasonable to expect temperature to impact

accumulation rates as a result of effecting network microbial and chemical reaction

rates. If model parameters are also shown to be reproducible, the potential ability to

transfer between sites could reduce the need for trunk specific studies thereby facili-

tating widespread application.

While the substantial advantage of the modelling approach verified here is the ability

to simulate accumulation with the complexity of the wall bound state suitably

described, the processes of accumulation themselves are simply captured in a single

pipe specific coefficient. This could be readily advanced as understanding of these pro-

cesses are better understood, such as including a seasonal temperature dependence,

reflecting the understanding that microbial processes are central to material accumu-

lation and that microbial processes are nearly all temperature dependent. Previous

work has also shown that accumulation rate is a function of both the bulk water quality

in the pipe of interest and the pipe material itself (Husband and Boxall, 2011 and Cook

and Boxall, 2011). The dataset for calibration to TM-NR with an upstream turbidity

record could be used to indicate if change in background bulk water turbidity over a

trunk main pipe length could be a related to accumulation processes. However,

dependence of the accumulation rate to background concentrations of turbidity, or any

other parameter, was not included in the model form as the evidence for this is

currently at best incomplete. Interestingly the bulk water concentration examples

discussed here demonstrate that even the understanding of whether, where and when

accumulation mechanisms are rate of supply or process limited is currently unknown.

Recent industrial initiatives have stressed the importance of striking a better balance

between capital and operational expenditure through consideration of whole life costs.

As a result, more water service providers are appraising and developing risk based

management strategies to help prolong the life of assets to safeguard water quality. For

example, operators may want to understand the impact of a near-term future flow

increase, or by how much they could increase the flow without exceeding a turbidity

threshold. Using the VCDM this could be posed as a simple optimisation problem.

Alternatively, operators could be presented with a real-time management outputs

demonstrating the maximum turbidity that will result from any number of instan-

taneous flow increases.

Data driven methodologies are also being developed that could be used as early warning

systems enabling beneficial proactive management strategies to be implemented as an

alternative to expensive trunk mains cleaning programs (Meyers et al. 2017, Kazemi et al.

2018). Both data driven methodologies and the VCDM however require large temporal

datasets with a range of turbidity events for calibration or facilitate machine learning

training. The VCDM is based on conceptual understanding, so if further calibration is

shown to offer grouping of VCDM parameter values, and hence transferability between

locations, it would potentially be of generalised value. Both approaches have the potential
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for greater operational application and there is a trade-off to be explored based on

amount of data and under/overfitting.

The VCDM could in future be refined using knowledge gained from calibrating model

instances for a variety of different systems and also by using machine learning techniques

to build accumulation sub-models. The resulting improvements in predictive accuracy

could drive the uptake of asset management strategies where shear stresses are periodi-

cally, pro-actively increased so that planned or unplanned flow increases do not cause

unacceptable turbidity responses. By tracking discolouration potential over an extended

period (weeks, months or years), the VCDM can equip water providers with a tool for

assessing how different interventions and incidents could impact bulk water turbidity,

alert operators when a flow increase is predicted to cause the bulk water turbidity to

exceed a threshold, review network changes by analysis of accumulation rates, develop

and optimise flow conditioning programmes for non-invasive cleaning and determine

associated whole life costs.

Following the quotation, or slight misquotation of George Box, we fully accept that

the model we propose is in one sense wrong, in that it does not fully capture or

describe all the processes and interactions occurring. However, the majority of the

validation presented here shows the ability to simulate the observed turbidity data to

an accuracy of less than 1 NTU. This is the turbidity standard applied at the exit of

water treatment works, is significantly less than the 4 NTU limit at consumers taps

and even lower than the generally accepted limit of human observation which is,

subject to lighting conditions and size of sample, generally into the teens. Hence we

conclude that the model is useful.
Conclusions
The paper presents calibration and validation of a semi-empirical model that tracks the

continual processes of accumulation and mobilisation of material from pipe walls

within drinking water distribution systems. Functionality to enable automated cali-

bration was developed and implemented making use of particle swam optimisation.

This was found to provide efficient and repeatable solutions from rigorous searching of

the problem space. Automated approaches were also developed enabling identification

of periods of interest from long and complex turbidity time series data.

The model formulation was shown to maintain the mobilisation functionality of pre-

vious validated shear-stress-dependant modelling tool, but requiring only two empirical

parameters. Evidence of this was presented for four classic cases across both cast iron

and plastic pipe materials and hence covering different material behaviour within these.

Calibration to long time series flow and turbidity data was presented for two trunk

main systems. The model is shown to make usefully accurate simulations for flow

mediated events and with sufficient data, validation of the predictive capability was

demonstrated. This supports the observation and model functionality that material with

all shear strengths accumulates continuously at a rate invariant to hydraulic forces.

Overall the paper demonstrates the capability of the new formulation combining

a sub-model tracking the temporal shear strength profile of accumulated pipe wall

material and a hydraulically defined material mobilisation model. With the VCDM,

water service providers have for the first time a tool to assess both effective
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real-time and long-term hydraulic discolouration responses, quantify network

changes and plan, with costing implications, maintenance schedules to safeguard

drinking water quality.
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