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Abstract

Most pattern classification systems are usually developed based on the training of
historical data, and as a result, the performance of these models relies heavily on the
amount of collected information. However, in many cases, such data collection process is
relatively costly, which eventually limits the efficiency as well as the widespread
implementation of the final developed model. In this context, the paper focuses
on presenting an advanced universal water management system, which could
interface with both water consumers and utilities via smart phone and web application.
Originally, Autoflow©, a prototype tool that is used to disaggregate total water
consumption into each end-use category was developed, which achieved an
accuracy ranging from 74 to 94%. However, a drawback of this model was that
it was trained with data collected from only Australia; therefore, accuracy reductions would
likely be observed when this system is implemented in different countries having very
different water using appliances and behaviour patterns. To avoid the costly data
collection process for model calibration when operating in new regions, this research
study introduces an enhanced model, namely AutoflowU (i.e. U stands for Universal). This
new tool can be applied in residential properties globally to autonomously disaggregate
water consumption into the seven main water end-use categories, namely: shower, toilet,
tap, clothes washer, dishwasher, evaporative air cooler and irrigation, without the need
for collecting new regional end-use data for model calibration. In order to develop this
new tool, Decision Trees, Dynamic Time Warping (DTW), Self Organising Map (SOM) and
Hidden Markov Model (HMM) techniques were utilised. The test results obtained from
230 properties in both Australia and the US showed that the AutoflowU achieved 72–93%
accuracy.

Keywords: Water end use event, Residential water flow trace disaggregation, Self
organising map, Hidden Markov model, Dynamic time warping algorithm, Water
demand management

Introduction
Urbanised regions in Australia have been facing a series of complex problems involving

the supply and demand management of water resources (Sahin et al. 2014a). In the last

few years, many urban areas (e.g. Melbourne Sydney, Southeast Queensland or Adelaide)

have endured severe droughts in conjunction with high population growth. In response,

water demand management programs and policies were instituted to ensure the current

urban water demand could be met and also provide a solution to the problem of
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sustaining the water resource for future use. However, the limited understanding of how

water was used has remarkably reduced the effectiveness of the applied water demand

management schemes (Sahin et al. 2014b). Recent advancement in sensor technology has

allowed for the development of an intelligent water management system that presents new

approaches to enhance water security through capturing, analysing, providing real-time

water consumption data and creating an inter-connection between water utilities and cus-

tomers (Stewart et al. 2013; Beal and Stewart 2011), as well as changing customers’ water

use behaviour (Stewart et al. 2013).

Existing autonomous water end use classification applications

A number of different mathematical models have been proposed to autonomously assign

unclassified water consumption patterns into appropriate end use categories. The

first-generation approaches (e.g. Trace Wizard and Identiflow) that employed simple Deci-

sion Tree method were resource intensive, which required significant data analysis based on

manually populated templates to achieve the disaggregation task (Stewart et al. 2010). The

second-generation approach (e.g. HydroSense) required a sensor network on all water end

use appliances achieved higher accuracy. However, this approach was cost intensive and in-

trusive as it requires many sensing devices to be attached to water appliances at the proper-

ties (Froehlich et al. 2009, 2011) and can artificially influence water use behaviour. The latest

third-generation approach (e.g. Nguyen et al. 2011), requiring only one smart meter installed

at the property boundary helps overcome the deficiencies of the first two. This approach uti-

lises intelligent machine learning algorithms for the end use disaggregation task. Some of

notable studies includes (Pastor-Jabaloyes et al. 2018), (Cardell-Oliver et al. 2016), BuntBrain-

ForEndUses® by (Arregui 2015), REU2016 by (Vitter and Webber 2016, 2018), SmartH20 by

(Cominola et al. 2015, 2018) and Autoflow by (Nguyen et al. 2015; Stewart et al. 2018). The

latter mentioned Autoflow software uses a combination of different pattern recognition and

data mining techniques including HMM, ANN, DTW, histogram analysis and time-of-day

probability function to automate the end use analysis process. Further, Autoflow©, a software

tool was developed and used to provide a user-friendly platform to aid this process. The

novelty of this application in comparison with former software tools in this area, including

Trace Wizard, Identiflow and HydroSense is presented in Table 1.

Table 1 Residential end use analysis techniques comparative analysis matrix

Technique
examined

Equipment
required

Recognition analysis
technique(s)

Processing
efficiencya

Accuracyb Costc Feasibilityd Overalle

TraceWizard
Or Identiflow

Smart meter
and data logger

Decision tree **** ** ** *** **

HydroSense Smart meter, data
logger and
pressure sensors

HMM *** ***** * ** ***

Autoflow Smart meter
and data logger

HMM + DTW + probability *** **** *** **** ****

aProcessing efficiency relates to time required to recognise end use events, bAccuracy relates to techniques
degree of accuracy in recognising end use events correctly, cCost relates to the capital cost for setup and
ongoing resources required to analyse data received, dFeasibility relates to viability of widespread rollout of
technology for automated end use analysis in a region, and eOverall relates to the combined overall
assessment on the applicability of the technique for widespread viable automated end use analysis of
residential water flow data. Rating system: 1 star (*) = poor; ** = below average; *** = average;
**** = good; ***** = excellent
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The next generation of water management system - AutoflowU

The most advanced autonomous water end use classification system, namely Autoflow©

(version 2.1), was first developed by Nguyen et al. (2013a, 2013b, 2013c, 2014, 2015),

which is able to disaggregate the overall water consumption into eight different

end-use categories, including shower, faucet, clothes washer, dishwasher, evaporative air

cooler, toilet, irrigation and bathtub with an average accuracy of 92%. Recently, a more

advanced Autoflow© version (v3.1) was developed (Yang et al. 2018) to have improve

the obtained accuracy to 93.5%. To develop Autoflow©, water consumption data was

collected from different regions across Australia with up to approximately 1000 house-

holds. Rigorous testing has shown that the system has been effectively operated for

regions where the collected data was used for model development, but noticeable ac-

curacy drop has been observed when employ it to the US and some Australian remote

regions where data has not been presented to the model before. Therefore, innovative

techniques are required in order to overcome the dependence on the existing prototype

resources. In that context, this study proposed the development of an enhanced model,

which can be applied to residential dwellings across the world without the need of

collecting new data for model calibration. The overall water consumption will be disag-

gregated into seven distinctive categories, namely; shower, tap, irrigation, clothes

washer, dishwasher, toilet, and evaporative air cooler. The graphical user interface of

this new application, AutoflowU, is presented in (Fig. 1).

AutoflowU was developed with the purpose of being a universal tool, which is capable

of assigning most major end-use events available in a residential household into appro-

priate categories without relying on any pre-trained model. The basic differences

between Autoflow©, which includes two major versions, v.2.1 and v.3.1 (Yang et al.

2018), and AutoflowU are presented in Table 2.

Overview of applied techniques
The overall classification process used in AutoflowU is presented in Fig. 2. The process

starts with the disaggregation of all mechanised end-uses in the order of clothes washer,

dishwasher, evaporative air cooler and toilet using Dynamic Time Warping algorithm.

Fig. 1 Smart water monitoring application (AutoflowU)
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Once all events of these categories have been correctly classified, the last step is to

assign the remaining end-uses as shower, irrigation and tap using Decision Tree and

Self Organising Map (SOM) methods. The application of these techniques into the

overall classification process is described in the following sections.

Dynamic Time Warping algorithm (DTW)

One of the primary mathematical tools applied in this study is the Dynamic Time

Warping (DTW) algorithm, which is popularly used for measuring the similarity between

two time series of different lengths. In general, this task is performed by finding an opti-

mal alignment between two series with certain restrictions. The sequences are extended

or shortened in the time dimension to determine a measure of their similarity

Table 2 Basic differences between Autoflow© and AutoflowU

Features Autoflow© AutoflowU

Version 2.1 Version 3.1 Version 1.0

Released date December 2013 September 2018 November 2018

Model
development

Rely on available water end use data for model training Do not require any existing
data for development and
calibration

Applied
techniques

• Hidden Markov Model
• Dynamic Time Warping
Algorithm

• Time of day Probability

• Hidden
Markov Model

• Dynamic Time Warping
Algorithm

• Deep Learning
(Stacked Auto-encoder)

• Time of day Probability
• K-means clustering
• Self Organising Map

• Dynamic Time Warping
algorithm

• Self Organising Map
• Decision Tree Method

Available
categories for
categorisation

8 – Shower, Bath, Irrigation,
Clothes washer, Dishwasher,
Evaporative Cooler, Toilet, Tap

7 – Shower, Irrigation,
Clothes washer, Dishwasher,
Evaporative Cooler, Toilet, Tap.
(*) Shower and Bath are merged
into one single category

Obtained accuracy when analysing different dataset

Australia data 75.0–92.0 76.3–93.5 72.1–92.3

US data 72.5–90.6 72.5–90.6 74.2–92.2

Fig. 2 Classification process in AutoflowU
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independent of certain non-linear variations in the time dimension (Myers and Rabiner

1981). This technique has been widely applied in prototype selection (e.g. Nguyen et al.

2011), pattern recognition (e.g. Myers and Rabiner 1981; Muller 2007; Rabiner and Juang

1993; Sakoe and Chiba 1978; and Marquez 2001) or word image searching (Manmatha

and Rath 2002). All technical details and applications of DTW in the development of

Autoflow© system were presented in (Nguyen et al. 2015), while the adaption of DTW in

classifying clothes washer, dishwasher, toilet and evaporative air coolers events in AutoflowU

system are presented in “Classification process for each end use category” section.

Self Organising Map (SOM)

SOM is the main technique applied for the classification of user-dependent categories

including shower, irrigation and tap. In general, this technique is commonly used to group

patterns having similar characteristics together. In the context of this study, unlike DTW

where the grouping process was performed based on the analysis of actual shape pattern

of each event, SOM relies on the physical features, such as volume, duration and flow

rate, to gather similar events. The adoption of SOM for this task is due to the fact that al-

though tap, shower and irrigation categories could possess an infinite number of end-use

patterns, there are still significant differences in terms of volume and flow rate between

these end uses. Technical overview as well as the application of this technique in to the

task of grouping similar patterns together are described in detail below.

There are two different models for the self-organising map including Willshaw-von

der Malsburg model and Kohonen model. In both models the output neurons are

placed in a 2D lattice. They are different in the way input is given. In terms of

Willshaw-von der Malsburg model, the input is also a 2D lattice of equal number of

neurons, while in the Kohonen model there is not any input lattice but an array of in-

put neurons. In the context of this study, the Kohonen model was adopted (Kohonen

1982). Given a set of M water events that need to be grouped into N clusters, the adap-

tion of SOM into the task of clustering of these events is as follows:

Step 1: Each cluster weights Wj(O) are initialised randomly.

Step 2: An input vector from the data set is chosen randomly. In this study, each input

vector contains three values describing three physical features of a water event,

including volume, duration and maximum flowrate and is denoted by:

� X = [w1,w2,w3]

� There are N clusters in the grouping process, and hence N neurons required in the

SOM model. For any neuron, the synaptic weight vector is denoted by:

� Wj ¼ ½wj1;wj2;wj3�; j ¼ 1; 2; 3;…N

Step 3: Every cluster is examined to calculate which one’s weights (Wj) are most like

the input water event X. In order to achieve this, Euclidean distance was chosen as the

main criterion. If the index vector g(x) is used to identify cluster that is closest to the

input vector X, then g(x) can be determined as:

g xð Þ ¼ arg min X−W j

�� ��; j ¼ 1; 2;…;N ð1Þ

Step 4: the wining cluster locates the centre of a topological neighbourhood of

cooperating cluster. The neighbourhood of this winning cluster, denoted by hj,g
calculated by:
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hj;g xð Þ ¼ exp −
d2
j;g

2σ2

 !
ð2Þ

d2
j;g ¼ jr j−rg j

�� ��2 ð3Þ

Where rj is the position of the excited cluster j is, rg is the position of the winning

cluster g, σ is the width of neighbourhood function.

Step 5: Adjust the weights of the winning cluster and its neighbours, using the

following rule:

wj nþ 1ð Þ ¼ wj nð Þ þ η nð Þhj;g xð Þ nð Þ x−wj nð Þ� � ð4Þ

where η is the learning rate parameter of the algorithm which should be time varying

and linearly decreases to zero.

η nð Þ ¼ ηo exp −
n
δ

� �
ð5Þ

In this study, the initial learning rate ηo and time constant δ are set as 0.1 and 1000

respectively.

In addition to DTW and SOM, a clear understanding of physical features of each

end-use category plays an important role in deciding the overall accuracy of the devel-

oped model. “Overview of basic characteristics of the end-use categories” section pre-

sents an overview of all particular characteristics of major end uses available in this

study including clothes washer, dishwasher, toilet, evaporative air cooler, tap, shower

and irrigation. The typical shape patterns of these end uses are clearly illustrated

through the figures presented in (Nguyen et al. 2013c).

Overview of basic characteristics of the end-use categories
Clothes washer and dishwasher

Different clothes washers and dishwasher have different trace characteristics. Some

models, which permit adjustment for load size, can exhibit various trace characteristics

at different times. The only common feature of all clothes washers was the operation

within the cycle, including the wash, spin and rinse cycle. However, the number of each

cycle within each operation is not fixed and depends on the clothes washer models.

Evaporative air conditioner

Several end-use studies (Beal and Stewart 2011; Gan and Redhead 2013) have revealed

that there are two types of evaporative air cooler patterns. Type 1 evaporative cooler is

the most common one covering a wide range of event durations (from 2 to 20 mins)

with a low flow rate of less than 1 L/min. This type of cooler can be identified easily at

the beginning of the classification process by searching for any event that possesses

these characteristics with an accuracy of up to 95%.

For Type 2 evaporative cooler, the classification process is much more complicated,

as this end-use has similar patterns to the clothes washer and the dishwasher events,

and also operates in cycle sequence. The only characteristic that can help distinguishing

Type 2 evaporative cooler from the other mechanised end-use events is the number of
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cycles in each operation, which is significantly more than that of clothes washer and

dishwasher.

Toilet

Toilet is one of the mechanised categories, which possesses a relatively consistent pat-

tern. The two popular toilet cisterns available on the Australian market are the

half-flush and the full-flush cisterns. Their volumes usually range from 3–6 l and

6–12 l, respectively. The categorisation of these fixtures can be used with great confi-

dence in relation to their distinct flow pattern and restricted volume.

Shower

Generally, there are two types of shower events; (1) occur in separate shower stalls, and (2)

occur in shower/bathtub combinations. Each type of shower event produces a distinct pat-

tern. A shower event from a shower/bath tub combo typically begins with a high flow rate.

Then, the diverter valve is tripped and the flow is throttled down to a much lower rate for

the duration of the shower. A standard shower stall event does not exhibit the high flow rate

at the beginning or end of the shower event; also, it tended to have a relatively consistent

flow rate throughout the duration of the shower event. Volume and the most frequent flow

rate (mode) property are two critical features for identifying a shower event.

Tap

Tap usage was the most common water use encountered while undertaking the residential

analysis. Because humans determine the flow rate and the duration of each tap event, a wide

variety of tap uses were encountered with each trace. Fortunately, kitchen and bathroom

taps were seldom capable of flow rates above 13.2 L/min, while most tap usages were rela-

tively brief. Small volume and short duration are the key points to identify this end use.

Irrigation

Irrigation is a complicated category to be identified due to its various patterns. However,

there are mainly two different types with two significant different volume ranges. Short man-

ual irrigation event is similar to a tap event, which usually has a volume ranging from 2 to

10 l, and long irrigation event using automatic sprinkler which often has volume over 150 l.

In the context of this study, all short manual irrigation event will be considered as tap.

Classification process for each end use category
Clothes washer event classification

As illustrated in Fig. 2, clothes washer event classification is the first step of the overall

process. To enable the clothes washer event classification using the technique proposed

in this study, Table 3 is presented that covers all possible features a clothes washer wash

could have (Fig. 3).

From the collected data, four basic physical parameters of each event, including vol-

ume (L), duration (second), maximum flow rate (L/min) and most frequent flow rate

(L/min) can be determined. From these obtained features, the classification process is

as follows:
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Table 3 Possible features a clothes washer wash

No. Clothes washer features Minimum value Maximum value

1 Volume per wash (litres) 20 150

2 Flow rate (litre/min) 5 25

3 Duration of 1 cycle 20 s 5 min

4 Volume of 1 cycle (litre) 1 100

5 Time interval between two consecutive cycles 10 s 2 h

Based on those features, clothes washer classification process starts following the procedure presented in Fig. 3, and also
illustrated through the example below

Fig. 3 Clothes washer event classification procedure
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Step 1: Select all samples that concurrently satisfy the following constraints (i)

Flowrate from 4 to 35 (litre/minute), (ii) Duration from 0.1 to 10 min, and (iii)

Volume from 0.5 to 120 l. The selected samples from Step 1 are presented in Fig. 4.

This step aims to remove all events that are not likely belonging to clothes washer.

Step 2: With the time associated with each recorded sample, the main task in Step 2 is

to disaggregate all samples in Fig. 4 into different clusters in which the time interval of

any two consecutive samples does not exceed 2 h (i.e. based on Feature 5, the

maximum time interval between two consecutive cycles should be less than 2 h). This

step aims to ensure that a full clothes washer operation will be entirely contained

within one cluster. At the end of this step, 32 clusters were established, three of which

were randomly selected, and are presented in Fig. 5.

Step 3: In step 3, all samples within a cluster that have approximate flow rate were

grouped together. However, only groups that satisfy Feature 1 (i.e. the overall volume

of that group must be at least 20 l) were retained. Figure 6 displays one of the groups

extracted from Cluster 2 presented in Fig. 5. All other samples that could not be

grouped together were removed. It should be noted that the utilisation of Feature 1

can also help eliminate most of the typical dishwasher events. In case there are groups

of dishwasher samples that satisfy all requirements in Step 3, the identification of these

groups is presented in Step 5.

Step 4: At step 4, all groups that contain samples with approximate flow rate from all

clusters will be put together in one set (Fig. 7). a Set 1 of groups containing samples of

approximate flow rate. b Set 2 of groups containing samples of approximate flow rate

Figure 7 presents two of four sets containing groups of samples with a similar flow

rate obtained from Step 3 (i.e. Set 1 and 2 were formed by all groups that contain

events with the most frequent flow rate ranging from 11.5–13.5 and 6.5–8.5 L/min

respectively). From the visual judgement, it can be seen that the events in Set 1 are

very likely to belong to clothes washer while those in Set 2 are from different user-

dependent categories. However, more evidence based on mathematical analysis is

required to confirm the above statement.

Fig. 4 Selected samples from Step 1
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Step 5: Given the fact that time interval between each cycle in a clothes washer

operation usually follows a certain time pattern, the identification of this type of end

use can be done by searching for sets obtained in Step 4 whose time sequence of

events within each group follows a particular trend (i.e. time sequence shows the time

interval between consecutive events in a group). This task is undertaken using DTW

to estimate the similarity of time sequence of each group. Figure 8 shows the time

pattern of all groups contained in Set 1 (Fig. 7a) and Set 2 (Fig. 7b).

To determine whether the time patterns of the selected set follows any certain trend, the

sample grouping process presented in “Overview of applied techniques” section using

DTW was applied. If more than 50% of the groups exhibited a similar time pattern, then

that set was assigned to clothes washer. The threshold value of 50% was decided to allow

the variation in time sequence due to the selection of different washing settings by the

users (e.g. normal wash, hand wash or quick wash modes of the same washing machine

will result in different time sequence). The actual verification process has also indicated

that with the set that contains a group of user-dependent samples, the grouping rate is

almost less than 10%. The process has shown that three out of four time sequences (75%)

shown in Fig. 8a were grouped together, which confirms the samples contained in Set 1 to

be from clothes washer category.

Step 6: In this step all clothes washers will be identified by adding all samples in the selected

set together. Clothes washer events of the tested homes in this example are displayed in Fig. 9.

Fig. 5 Example of three randomly extracted clusters from 32 achieved clusters. a Cluster 1. b Cluster 2. c Cluster 25

Fig. 6 One selected group from Cluster 2
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Step 7: The final step is to refine the classified clothes washer events achieved in

Step 6. This task is undertaken by applying the sample grouping technique using

DTW as mentioned in “Classification process for each end use category” section.

By carrying out this process, all clothes washer events that have similar patterns

will be grouped together and those that are ungrouped will be removed as they

belong to other categories. Figure 9 has shown that the first event in the top-

right group in Fig. 7a was removed as it has a different pattern from the

remaining samples.

Dishwasher event classification

The classification of dishwasher is undertaken after classifying all clothes washer

events. The features presented in Table 4 cover almost all dishwasher models available

on the market. To deal with this end use category, the same techniques as in clothes

washer event classification were applied. However, it should be noted that as a dish-

washer is not present in all households, it is important to identify the existence of this

end use in the tested property. This task can be achieved at Step 5 of the classification

Fig. 7 Combing groups of similar flow rate. a Set 1 of groups containing samples of approximate flow rate.
b Set 2 of groups containing samples of approximate flow rate
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Fig. 8 Time interval between any two consecutive samples. a Corresponding time sequences of all groups
in Set 1. b Corresponding time sequences of all groups in Set 2

Fig. 9 Classified clothes washer events of the tested home
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procedure. At this step, if there is no set that contain groups of similar samples which

follow a certain time pattern can be identified, it can be confirmed that there is no

dishwasher in the currently tested home.

Evaporative air cooler classification

Evaporative air conditioner is an uncommon category that is just present in a few regions in

Australia (e.g. Melbourne, Adelaide, Perth, etc.). As mentioned in “Overview of basic char-

acteristics of the end-use categories” section, there are two typical types of evaporative air

cooler, where Type 2 is the main subject of the analysis in this study because it possesses

similar characteristics to clothes washer and dishwasher. This section aims to categorise this

type of evaporative cooler events that still remain unclassified after the disaggregation of

clothes washer and dishwasher where they exist. The same method as in clothes washer

event classification is applied; however modification is required as presented below.

The analysis starts with the disaggregation of the remaining samples into clusters where

time interval between two consecutive samples in each cluster should not exceed 30 min

(Step 1) (Gan and Redhead 2013). In Step 2, all events that have similar flow rate, volume

and duration will be grouped together as almost 95% of Type 2 evaporative cooler events

possess these characteristics. Step 3 aims to gather all extracted groups in Step 2 that have

similar flow rates together into different sets. At this step, most of the evaporative cooler

events will be visually identified. However, there is still a possibility that a set of toilet events

also exists, as this category also has similar flow rate, duration and volume. The disaggrega-

tion of these two end uses, in case they appear together, is undertaken in Step 4 by finding

the time sequence pattern of samples in each group. Sets containing more groups whose

samples follow a certain time pattern will be assigned to evaporative cooler and the other

one will be classified as toilet. The last step of the overall classification process is to refine

all samples that do not belong to evaporative air cooler category through a process as pre-

sented in Step 7 of clothes washer classification.

Toilet event classification

Toilet event classification is the next step in the overall process when clothes washer, dish-

washer and evaporative air cooler events have been identified. As toilet is a mechanised cat-

egory whose volume and pattern are relatively deterministic, the categorisation of this end

use can be undertaken in these four steps and illustrated through the following examples.

Step 1: From the remaining unclassified samples, search for all events whose volumes

are in between 2 and 20 l (Fig. 10)

Table 4 Basic features of dishwasher event

No. Dishwasher features Minimum value Maximum value

1 Volume per wash (litre) 5 20

2 Flow rate (litre/min) 2.5 10

3 Duration of 1 cycle 10 s 5 min

4 Volume of 1 cycle (litre) 1 10

5 Maximum time interval between two consecutive cycles (minutes) 2 20
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Step 2: Apply the sample grouping technique developed in “Classification process for

each end use category” section to group all events that have similar patterns together. At

the end of this step, there could be many groups created. Figure 11 below shows that

events having similar patterns have been put together in two different groups.

Step 3: Select groups that contain events having approximate volumes. In this

example, volumes of events within each group are approximate, which indicates that

events in these two groups all belong to toilet category.

Step 4: The last step of toilet event classification is to remove any event coming from other

categories that have been misplaced into the toilet group. This task can be performed by

determining the most frequent volume of each group (i.e. the typical volume of toilet event).

Any sample whose volume is different from this typical volume by 2 l will be removed. In

this example, no such an event exists in both groups and all events in both groups are

eventually classified as toilet.

Fig. 11 Similar events grouping process

Fig. 10 Events that are likely belonging to the toilet category
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Shower, irrigation and tap event classification

Once all mechanised end-uses have been successfully classified, the next task is to deal

with user-dependent events including shower, irrigation and tap as explained in the

next sub-sections. In this study, all irrigation events having volume less than 15 l will

be considered as tap.

Tap event classification

Tap is a typical user-dependent category whose patterns could vary unpredictably;

however, it can be easily picked up thanks to the small volume and short dur-

ation. The tap classification process can be performed by selecting any events

whose volumes are less than 15 l from the remaining samples. At the end of this

step, all remaining events will belong to shower and irrigation as presented in

Fig. 12.

Shower and irrigation event classification

In order to strip apart shower and irrigation, SOM was employed as the main tech-

nique. In this study, two main features including volume and flow rate were used as the

input in the SOM model for the similar event grouping process. Figure 13 presented

two subgroups that were obtained after the separation process using SOM. The final

task is to appropriately assign each subgroup to shower and irrigation. Given the fact

that irrigation events usually have significantly larger and lower occurrence frequency

than shower, the classification of these two categories can be determine through the

following steps:

� Step1: Determine most frequent volume of each group

� Step 2: Determine average daily occurrence of each group

� Step 3: Assign group that has larger most frequent volume and lower daily

occurrence into irrigation, and the remaining group to shower.

Fig. 12 Remaining events for shower and irrigation classification
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Model verification
Data collection for model verification

In this study, two verification processes have been conducted. To estimate the efficiency of

the proposed model on different data patterns, the first testing was carried out on 200

homes from Australia using Autoflow© and AutoflowU to provide an evaluation on the effi-

ciency of the new model in comparison with the former one. This dataset was collected

using a smart meter (72 pulse/litre) and data logger with sampling interval of 10 s from resi-

dential dwellings located in Melbourne and the urban south east corner of the State of

Queensland, Australia in 2011. In the second testing, data from 30 homes from the United

State of America (USA) was sourced from 110 homes in the Denver SF Flow trace Data Set.

Each home in this USA data set contains data of approximately 2 weeks in length and pro-

vide flow at a resolution of 0.01 gal on a ten second interval. With the availability of raw

flow trace data, end-use analysis was manually conducted by using both water audits and

diaries from participants to obtain accurate labelled end use data for model verification.

Discussion

It has shown in Table 5 that this model has outperformed the Autoflow© due to its in-

dependence on the collected database. The first testing aims to compare AutoflowU

with the original one using data collected from 200 homes in Melbourne Australia.

Achieved accuracy from Table 4 has showed that the new model obtained an average

accuracy of above 89.9%, with the maximum of 92.3% for clotheswasher and minimum

of 72.1% for irrigation. In comparison with the classic Autoflow©, the new application

has resulted in slightly lower accuracies with 92.3% compared to 92.5% for clothes

washer, 91.8% compared to 92.5% for dishwasher, 90.1% compared to 91.2% for toilet,

91.9% compared to 93.5% for shower, and 72.1% compared to 76.3% for irrigation.

The reason for these slight accuracy drops is due to the fact that Autoflow© performs

end-use classification based on pre-trained models with data collected across Australia, as

a result, the maximum model efficiency would be obtained when it is tested against

Australian data. On the other hand, the working mechanism in AutoflowU is independent

of any existing collected data, which may lead to some misclassification errors when deal-

ing with properties having complicated flow rate patterns. However, the most significant

advantage of this new AutoflowU package is the classifying Type 2 Evaporative Cooler

Fig. 13 Final classification. a Classified irrigation events. b Classified shower events
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pattern as the achieved accuracy is higher than that using HMM and ANN (85.1% com-

pared to 82.6%). The verification process has pointed out that due to the variant patterns

of this complicated end use, which can be similar to tap, toilet, dishwasher and clothes

washer, the efficiency of the advanced HMM and ANN model in Autoflow© dropped con-

siderably when analysing any home whose evaporative cooler patterns possess similar fea-

tures to the above mentioned end uses (i.e. this technique performs the classification

based on assessing the flow rate pattern and physical characteristics of each event to make

decision without inspecting the time pattern). In summary, the first testing has clearly in-

dicates that the proposed enhanced system is able to address most of the end-use classifi-

cation problems without the need of collecting data for model development and

calibration.

The second verification test was conducted to further illustrate the analysis capability of

the proposed system where water consumption data from the US was utilised. In this test,

apart from the Shower events, the achieved accuracies from AutoflowU were higher than

that of the classic model in all remaining categories as its working mechanism is location in-

dependence (see Table 6). This result indicates that the proposed method is very promising

when applied in regions where new data has not been collected for model training and cali-

bration. Comparing AutoflowU with Autoflow©, an accuracy increase was recorded for all

water end use categories, such as, 6.6% (clothes washer), 5.5% (dishwasher), 9.4% (evap-coo-

ler), 7.4% (toilet), 1.2% (tap), 1.6% (shower) and 1.7% (irrigation).

It was also found in this verification process that most of the errors were recorded

during the separation of clothes washer, dishwasher and evaporative air cooler. The

main reason is due to the working mechanism of these machines sometimes having

similar cycle times. More specifically, in terms of clothes washer, 5.3% of the events

were misclassified to dishwasher, 2.1% were misclassified to evaporative air cooler, and

the remaining 1.4% were misclassified to tap and toilet. With dishwasher and evapora-

tive air cooler, the misclassification rate of these two end uses to clothes washer were

Table 5 First model testing on 200 homes

Category Applied
model

Number of home Average
accuracy (%)Accuracy > 90% 85–90% 80–85%

Clothes washer 1a 132 55 13 92.3

2a 118 68 14 92.5

Dishwasher 1 62 28 30 91.8

2 60 33 27 92.5

Evaporative cooler 1 15 12 5 84.4

2 11 13 8 81.2

Toilet 1 20 142 38 90.1

2 38 135 28 91.2

Tap 1 36 134 30 88.1

2 29 149 28 87.9

Shower 1 145 38 17 91.9

2 160 26 14 93.5

Irrigation 1 0 0 36 72.1

2 0 0 36 76.3
a1- AutoflowU; 2- Autoflow©
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8.5 and 7.9%, respectively. Figure 14 provides two different metrics to present the entire

set of model testing results. In Fig. 14a, a confusion matrix was presented to provide in

detail the total number of events of each category used for testing as well as the cor-

rectly classified event for each end use. In Fig. 14b, two more sophisticated accuracy

measurement indices, namely precision and recall were adopted to express the obtained

results in Fig. 14a in a more scientific manner. For example, with clothes washer, a pre-

cision value of 0.91 and a recall value of 0.92 imply that within 1729 actual clothes

washer events present in the validation process, 92% of them were correctly classified

(recall), and within 1760 events that classified as clothes washer, 91% of them were the

Table 6 Model testing on 30 homes from USA with complicated untrained patterns

Category Applied model Number of home Average
accuracy (%)Accuracy > 90% 80–90% 70–80%

Clothes washer 1a 6 – (20%) 20 – (66.7%) 4 – (13.3%) 90.1

2a 4 – (13.3%) 10 – (33.3%) 16 – (52.3%) 83.5

Dishwasher 1 3 – (10%) 7 – (70%) 5 – (14.3%) 87.6

2 2 – (%) 4– (%) 9 – (%) 82.1

Evaporative cooler 1 2 – (13.3%) 2– (20%) 3 – (66.7%) 86.8

2 0 – (0%) 1– (14.3%) 6 – (85.7%) 77.4

Toilet 1 5 – (13.3%) 20 – (66.7%) 5 – (13.3%) 88.5

2 6– (20%) 13– (43.3%) 11– (36.7%) 81.1

Tap 1 20– (66.7%) 3– (10%) 7 – (23.3%) 89.5

2 18– (60%) 6– (20%) 6– (20%) 88.3

Shower 1 15– (50%) 8– (26.7%) 7– (23.3%) 92.2

2 14– (46.7%) 5– (16.7%) 11– (36.7%) 90.6

Irrigationb 1 0 0 10 – (100%) 74.2

2 0 0 10 – (100%) 72.5
a1 AutoflowU; 2 Autoflow©. bOnly 10 homes in this testing have irrigation events

Fig. 14 Overall testing result. a Confusion matrix of testing results. b Precision and recall of testing results

Nguyen et al. Smart Water             (2018) 3:5 Page 18 of 21



actual clothes washer (precision). It should also be noted that as the proposed model in

this study allows for a very wide range of different characteristics of all mechanised end

use categories available on the market, it is very unlikely that the model calibration is

required when deploying it on different regions.

Conclusion
The establishment of an integrated water management system, which employs smart

water metering, in conjunction with a series of intelligent algorithms to automate the

flow trace analysis process, is becoming feasible due to the development of Autoflow©.

The first version of this software tool offers a robust pattern recognition procedure

through the hybrid combination of customised HMM and ANN algorithms, which have

successfully assigned most of the unclassified samples into appropriate categories, with

the average accuracies ranging from 76 to 93% when tested on over 200 homes in

Australia. However, it is expected that when applying the model in an international

context, the unlimited number of untrained patterns will be the main cause to the

significant efficiency reduction of the existing combined HMM and ANN model in

Autoflow©; therefore it is crucial to develop a dynamic tool that can work with all

different data patterns without any reliance on the pre-trained model. This study has

been conducted to achieve that goal through the development of AutoflowU which is

especially designed for residential single dwelling, that can classify common categories

autonomously based on their physical pattern features and working mechanisms. The

achieved accuracy of 74–92% when testing the model on a large number of complicated

untrained samples has shown its superior performance in comparison with the existing

HMM-ANN combined model and its promising efficiency in dealing with these types

of end-uses in the worldwide scenario.

The final analytical stage to be completed in future research is to further extend

AutoflowU’s capability to deal with commercial property. New techniques are required to

allow this model to analyse data on a real-time basis without relying on the previously

trained knowledge. The high level of accuracy obtained through the verification process on

USA data is a promising outcome for this study. However, in order for AutoflowU to become

a highly accurate, adaptable and autonomous software that has worldwide commercial appli-

cation, further training, testing and validation, using samples from independent homes from

various urban areas within different countries, will also need to be carried out to confirm the

accuracy level of this application for various situational contexts (e.g. country, region, etc.).
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