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Abstract

Background: Extreme weather and climate events such as super typhoons and
unprecedented recorded high intensity rainfall events have increased in recent years
due to climate change. Such extreme weather events generate floods and cause loss
of life and property. Therefore, efficient strategies and measures for flood mitigation
and prevention are essential. Computer-aided techniques can increase the speed of
emergency response and reduce the impacts of a flood.

Methods: This study applied the cyber-physical system concept to develop a smart
flood information system, called Dayu Smart Water System. The system includes an
on-site monitoring network and software for rapid flood modeling to provide
updated information. With the utilization of Internet of Things and artificial
intelligence, the system not only provides forecast information but also plays an
active role by enabling users to take emergency response measures before, during,
and after a flood. The system is aimed at accelerating emergency responses during a
flood without requiring any human intervention.

Results: The system was deployed in a high-tech industrial park in central Taiwan.
Experimental results revealed that the system could increase the response efficiency
of the emergency operations center during a few extreme events in 2017. To enable
the system to respond to a wide range of flood induced threats in a more effective
manner, a few advanced functions are under development and discussed in this
paper.

Conclusions: This study utilized Dayu Smart Water System that integrates on-site
monitoring sensors and advanced modeling tools to provide optimal flood forecasts.
However, the proposed system has implemented only the first three
levels—connection, conversion, and cyber levels. The higher the number of levels is,
the more added value is the system provides. The fourth and fifth levels, namely the
cognition and configuration levels, were not discussed in the study. Further
developments in these two levels will be conducted.
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Background
Various disasters such as typhoons, floods, and earthquakes may occur simultaneously

and cause catastrophic loss of life and property. In certain scenarios, disasters can be

sequential, in that the first disaster may trigger the second one, which may trigger sub-

sequent disasters (EISNER, 2014). Historical events such as the Thailand flood in 2011

and Fukushima Daiichi nuclear disaster in 2011 are examples of such scenarios. For
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example, the Thailand flood in 2011 caused over hundreds of deaths, and millions of

people were affected. The economic damage was estimated to be over US$40 billion,

according to a World Bank survey (Mahul, 2017). Taiwan is located in the northwest-

ern Pacific Ocean and is struck by typhoons three to four times a year. Typhoon

Morakot in 2009 is another example of such scenarios. This typhoon first engendered a

considerable amount of rainfall and subsequently triggered large-scale landslides,

resulting in more than hundreds of deaths in the south of Taiwan. Extreme weather

and climate events such as super typhoons and unprecedented high-intensity rainfall

events will attract more attention in the future because of the impact of climate change.

Structural measures, including the construction of structures such as dams and river

bifurcation, are proven to be effective for flood mitigation. However, the failure of

structural measures may cause greater disasters. Nonstructural measures such as early

warning systems can enable first responders to take necessary actions for reducing

damage and losses. Most early warning systems only provide passive information such

as flood forecasts or real-time observations (Thielen et al., 2009; Lopez-Trujillo, 2010;

Yang et al., 2015).

The rapid development of artificial intelligence (AI) and Internet of Things (IoT)

can transform early warning systems from passive information provides to active

systems that implement necessary actions during a disaster. AI has been applied to

disaster forecasting, prevention, and mitigation. For example, Augello et al. (2016)

used an agent model and a monitoring network to propose preventive measures

and provide alerts before the occurrence of an event. A chatbot was created at the

front end of the system to interact with users. Various studies have proved that AI

can accelerate complicated processes and generate efficient solutions not only in

disaster-related fields but also in many other fields (e.g., Monostori 2003; Alemdar

et al., 2017). IoT was introduced in 2005 and is mostly applied to supply chain

management, environmental monitoring, and other nonstress environments. Yang

et al. (2015) identified that the IoT technology can match identified information

requirements and provide added value to emergency response operations in terms

of obtaining efficient cooperation, accurate situational awareness, and complete re-

source visibility. Therefore, this study utilized AI and IoT to develop a cyber-

physical-system (CPS)-based smart water system—called Dayu Smart Water System

(DayuSWS)—that integrates on-site monitoring sensors and advanced modeling

tools to provide optimal flood forecasts. In addition, the system analyzes all the

collected information and forecasts to trigger active actions based on the situation;

for example, the system controls the start or stop function of water pumps. The

remainder of this paper is organized as follows. Study area section briefly describes

the study area in which the system was deployed. Components of the CPS-based

smart flood information system section explains the concept of a CPS and its ap-

plication in the study. Case and discussion section presents the case study and dis-

cussion. Finally, Conclusions section concludes the paper.

Study area

The Huawei Science Park, located in central Taiwan, was selected as the study area.

The red line shows the boundary of the park in Fig. 1. The yellow circles and the blue

arrows indicate the water level gauge locations and the flow direction, respectively. The
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DayuSWS was deployed in the park to conduct observations, provide forecasts, and

take actions. The park has an area of approximately 97 ha and has six optoelectronic

and biotechnological manufactories. The land is characterized by a gently sloped sur-

face from the northeast toward the southwest, with the average slope being 0.002.

Storm water is stored in detention ponds before its release to the river, because of

current legal restrictions. Therefore, two detention ponds, namely pond A and pond B,

were set at the lowest point of the Huawei Science Park to store flood water for a

period of 50 years (designed rainfall intensity: 101.8 mm/h), as illustrated in Fig. 1. The

drainage system collects all the rain water within the Huawei Science Park and eventu-

ally transfers it to pond A. The storm water in pond A is released only if the water level

in this pond is higher than that of the Hsinchuangzhi drainage (please find the location

in Fig. 1). During Typhoon Kong-rey in 2013, the water level in pond A was approxi-

mately 20 m (maximum water level: 20.56 m), implying that flooding risk still exists

because of climate change and developments in the area. In addition, on September 26,

2016, a 5 × 5 m2 digital surface model (DSM) was obtained using an unmanned aerial

vehicle (UAV) with enhanced GPS technology. This DSM information was used to

develop all subsequent models and conduct all simulations.

Methods
Components of the CPS-based smart flood information system

A 5C architecture—a connection level, conversion level, cyber level, cognition level,

and configuration level (Fig. 2)—was used as the guideline to achieve CPS (Lee et

al., 2015), one of crucial technologies of industry 4.0. Monostori et al. (2016) men-

tioned that CPS is one of the most notable advances in the development of com-

puter science and information and communication technologies. Moreover, CPS are

broadly applied in manufacturing, decision-making, and energy-related industries

Fig. 1 Study area—Huawei Science Park
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(Rho et al., 2016). This study developed an innovative CPS-based smart water sys-

tem, called DayuSWS, that bridges the gap between the physical world and cyber-

space. On-site sensors and a monitoring network record observations in real time

and transfer the observations to a big-data platform (connection to conversion

level). The field observations are standardized after data preprocessing and are sent

to the DayuSWS as inputs for model simulation (conversion to cyber level). The

DayuSWS can be integrated with other existing systems or a decision support sys-

tem (cyber to cognition level) to trigger appropriate active disaster mitigation mea-

sures (cognition to configuration levels).

Fig. 2 5C architecture of the DayuSWS

Fig. 3 Scenario involving rainfall for 3 h and 150-mm accumulated water to identify the high-flood-risk area
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Connection level

The connection level comprises the on-site sensors. Various types of sensors were in-

stalled on the basis of the study’s requirements. The connection level is the first level of

the DayuSWS that initiates all system functions. Therefore, the information recorded

by this level is crucial to trigger the other levels. The sensors were set up after carefully

analyzing the locations to ensure that the collected information is suitable. A scenario

involving rainfall for 3 h and 150-mm accumulated rain water, with no water outflow

from the park, was considered in this study. The simulated results are presented in

Fig. 3. The results revealed the west side of the park to have a high risk of flooding,

which is consistent with the topology of the area. Because all the vital facilities such as

power and water treatment plants are located on the west side of the park, a total of

six water gauges were installed on this side, as shown in Fig. 1. Figure 4 is the pictures

of all on-site gauges: the gauge locations from left to right and beginning at the top cor-

respond to the numbered locations in Fig. 1. Gauges 5 and 6 were installed to monitor

the water levels in pond A and the Hsinchuangzhi drainage, respectively, and are cru-

cial to understanding the water exchange between the park and outside area. Gauge

four was installed to monitor the water level in pond B. The rain water collected on the

east side is monitored by gauge three and then transferred to pond B. Moreover, gauges

one and two were installed to monitor the water collected on the upper side of the park

(red rectangle in Fig. 3). A rainfall gauge was installed at location 6 to monitor the

park’s rainfall. The real-time observations of all the sensors are wirelessly transferred to

the big-data platform at an interval of 10 min.

Cyber level

The connection and conversion levels transform real-time observations to useful infor-

mation for decision-makers. The information obtained is highly accurate because it is

based on on-site observations. However, information with an adequate lead time could

not be provided. Therefore, the cyber level is employed to provide forecasts with a lon-

ger lead time. In this study, the cyber level was determined to provide flood forecasts

Fig. 4 On-site water gauges set up at particular locations
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with a lead time of 6 h. To obtain the forecasts, a 1D–1D dual drainage model was

included, with rainfall forecasts in numerical format serving as the model input. The

details are discussed in the following subsections.

Numerical rainfall forecasts

To provide more reliable and timely flood forecasts, rainfall forecast information is

crucial. In this study, high-resolution numerical rainfall forecast information from

an ensemble numerical weather prediction system in Taiwan was used. The ensem-

ble numerical weather prediction system fabricated by the Taiwan Typhoon and

Flood Research Institute (TTFRI) consists of more than 20 ensemble units that are

individual numerical weather prediction models with different model configura-

tions. Therefore, a collection of more than 20 numerical rainfall forecasts can be

obtained from this system for the same location and time. This system collects

worldwide observation data such as temperature, wind, surface pressure, and rela-

tive humidity from satellites, atmospheric sounding devices, buoys, aviation routine

weather reports, ships, and other available sources. The collected data are then

used as boundary or initial conditions for the ensemble units. Then, rainfall fore-

casts in numerical format are generated according to these real-time weather con-

ditions. The ensemble system aims to provide 72-h numerical rainfall forecasts and

generates four runs per day at a 5-km spatial resolution. Hsiao et al. (2012, 2013),

Yang et al. (2015), and Wu and Lin (2017) have provided additional details on the

ensemble numerical weather prediction system. Moreover, a statistical technique

for effectively integrating ensemble forecasts is applied in the proposed system to

improve the accuracy of 1- to 24-h rainfall forecasts. Through an artificial neural

network (ANN)-based statistical technique, more than 20 ensemble rainfall fore-

casts are integrated to yield one accurate rainfall forecast. Our preliminary experi-

ments revealed that improved 24-h rainfall forecasts were obtained through the

ANN-based integration technique (Wu et al., 2016). Moreover, to further improve

Fig. 5 Data processing flowchart for the DayuSWS to provide 72-h rainfall forecasts
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the accuracy of short-term rainfall forecasts (i.e., 1- to 6-h rainfall forecasts), real-

time radar observation data are included. A radar data assimilation technique,

namely the three-dimensional variational data assimilation (3DVar) system, is used.

When the 3DVar system is used to rectify the modeled background errors, im-

proved 1- to 6-h rainfall forecasts are obtained. Such forecasts are valuable for

warning concerning floods due to convective storms. More details concerning the

3DVar system were provided by Sun et al. (2016). The proposed system uses the

aforementioned rainfall forecasts as model inputs to generate flooding forecasts.

The data processing flowchart is illustrated in Fig. 5. First, the ensemble mean of

all the ensemble units in the TTFRI ensemble numerical weather prediction system

is used to yield 1- to 72-h rainfall forecasts. Among the obtained forecasts, 1- to

24-h rainfall forecasts are then replaced by the improved forecasts yielded by the

ANN-based integration technique. Finally, the 1- to 6-h rainfall forecasts are re-

placed by the improved forecasts yielded by the 3DVar system.

Conversion level 1D–1D dual drainage model

This section briefly describes the overall structure of the 1D–1D dual drainage model

utilized in the proposed system. The proposed model was retrieved from the Storm

Water Management Model (SWMM), which is an open-source model that has been

widely adopted in many academic studies (Hsu et al., 2000; Chang et al., 2015). For the

initial rainfall-runoff process, the rainfall information is first applied to the RUNOFF

module of the SWMM to calculate the inflow discharges of manholes. Next, the infor-

mation of the inflows at the manholes is directly used as input to the 1D–1D model to

simulate the interaction between the below-ground storm sewer flows and the above-

ground street flows (Fig. 6). After the 1D–1D model simulations, the surcharges from

the manholes are considered as point sources to rapidly identify the high-risk surface

inundation areas.

Governing equation of the RUNOFF module The RUNOFF module of the SWMM

conceptualizes a catchment, which pertains to the input rainfall and output discharge,

as a nonlinear reservoir. In this representation, the catchment has an inflow due to

rainfall and an outflow due to evaporation and infiltration (Fig. 7). According to the

Fig. 6 1D–1D dual drainage model
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conservation of mass, the net change in depth d per unit time t between the inflow and

outflow rates of the catchment is displayed in Eq. (1).

∂d
∂t

¼ i−e− f −q; if d > ds

∂d
∂t

¼ i−e− f ; else

8
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ð1Þ

q ¼ 1:49WS
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where i is the rainfall rate, e is the surface evaporation, f is the infiltration rate, q is the

runoff rate (refer to Eq. (2)), W is the average channel width, S is the average slope of

the catchment, A is the surface area of the catchment, n is a surface roughness coeffi-

cient, and ds is the storage depth.

Governing equation for the 1D–1D dual drainage model To obtain the flood rout-

ing in the sewer or street, the continuity equation is combined with the momentum

equation, as shown in Eq. (3), to produce the average discharge.

∂Q
∂t

¼ 2U
∂A
∂t

þ U2 ∂A
∂x

−gA
∂H
∂x

−gAS f ð3Þ

where Q is the discharge in the sewer or street, t is the time, g is the gravitational accel-

eration, A is the cross-sectional area of the sewer or street, H is the hydraulic head of

water in the sewer or street, Sf is the friction slope from Manning’s equation, and U is

the velocity of water in the sewer or street. Details about solving Eq. (3) were provided

by Rossman (2015).

Description of the model setup in Huawei Science Park The Huawei Science Park is

an isolated urban drainage area. The 1D–1D dual drainage model in this area, as shown

in Fig. 8, includes 88 subcatchments, 142 manholes, and 216 sewers and streets that

collect the runoff and transfer the water to the detention ponds, which are located in

the southwest corner of the area.

Fig. 7 Nonlinear reservoir model of a catchment
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Case and discussion
Figure 9 displays an example of an integrated system output of the DayuSWS. The

connection level (01) provides users with information such as the current water

level in the storm drainage system and real-time videos from two monitoring cam-

eras. Three colors are used to provide warning information and to communicate

with users concerning an upcoming situation. Green represents that “the situation

is safe,” yellow represents that “the drainage pipeline is 50% full,” and red repre-

sents that “the drainage pipeline is 100% full and flood will occur shortly.” The

conversion level (02) provides location-specific information pertaining to the

Fig. 8 Layout of the model setup in Huawei Science Park

Fig. 9 Example of DayuSWS output: 01 is the connection level, 02 is the conversion level, and 03 and 04
are the cyber levels
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expected time in which the pipeline will be 100% full (red) or pipeline will be 50%

full (blue). The results are visualized to facilitate the communication process. The

cyber level 03 provides the subsequent 6-h forecast simulation results pertaining to

the water level on roads and areas that can be flooded. The flooded area is only

shown when the water level is higher than the curbs of the associated roads. The

cyber level 04 provides flood forecast at the county level with a lead time of 72 h

for precautionary purposes. The users can use this information to predict a disaster

and identify its possible impact.

A few events occurred since the establishment of the DayuSWS in May 2017. The

greatest event occurred on June 2, 2017 and was a high-rainfall event during the mon-

soon season (locally known as the Meiyu season). The Central Weather Bureau (CWB)

reported that more than 100 locations in Taiwan experienced more than 230 mm of

rainfall between early June 2 and early June 3, 2017. Some locations in northern Taiwan

experienced more than 600 mm of rainfall during the same period. This rainfall event

resulted in major flooding and mudslides. The study area experienced approximately

395 mm of rainfall in 24 h. Figure 10 shows the radar observation obtained from the

CWB and the rainfall distribution of the study area at the location of the Huawei rain-

fall gauge. The highest rainfall intensity of 49.5 mm/h was observed on June 3 at 5 am.

The period with the most severe rainfall was from 2 am to 8 am on June 3, with ap-

proximately 300 mm being accumulated in 6 h.

The DayuSWS monitored the park area and provided the forecasts from 9 pm

on June 2, 2017. The results showed only a few bodies of standing water on the

roads in the park but no significant floods. The system issued a warning message

on June 3 at 7 am (Fig. 11). During the end of the event (Fig. 10), the storm

drainage pipelines were almost 100% full. Ponds A and B (Fig. 1) are designed to

collect flood water for 50 years, and the storm sewage system is built to store

water for 25 years. The warning that the pipelines were full indicated that the two

detention ponds were almost full. If rainfall had continued, the park would be

flooded. Nevertheless, a levee breach was found in the upstream portion of the

study area (Fig. 12); thus, the flood water flowed to the upstream portion of the

study area that contained farmlands, averting further damage to the downstream

areas. During the event, the system provided accurate monitoring data and trans-

formed the data to useful information at the connection and conversion levels. The
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users could take immediate measures based on the information. If a forecast with

a 6-h lead time was provided to users at the cyber level, they could plan emer-

gency responses in advance to prevent or mitigate the impact of the predicted

floods. The second greatest event that hit the study area was Typhoon Haitang on

July 30, 2017. The accumulated rainfall was 211 mm from 7 pm on July 30 to

7 pm on July 31. The highest rainfall hour was 4 am on July 31. During the ty-

phoon, only one warning message was issued, when the water level in the

Hsinchuangzgi drainage was above the yellow level. However, the system predicted

that no flooding would occur due to the typhoon, and no flood was witnessed.

Thus, no damage was reported during Typhoon Haitang.

Conclusions
The study proposes an innovative CPS-based smart water system for providing

real-time flood observations and forecasts with a 6-h lead time. The system inte-

grates AI and IoT technologies to transform observed data to useful information.

The system not only provides monitoring data to users but also enables them to

actively take necessary measures to mitigate the impacts of floods. The system was

implemented in a science park located in central Taiwan. A few events tested the

capabilities of the system and proved the system’s potential for future applications

in disaster prevention and mitigation. However, the CPS concept is developed on

Fig. 12 Photographs taken at various locations during the June 2, 2017 event when the detention ponds
were almost full compared with the pictures in Fig. 4. The upstream area was flooded due to a levee
breach and the downstream area was not flooded during the event

Fig. 11 Yellow and red lines are the locations 2 and 4, respectively. Both of them reached the red level of
danger (water depth = 20.5 m), which implies that the storm drainage pipeline is almost 100% full
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the basis of the 5C levels, and the system has implemented only the first three

levels—connection, conversion, and cyber levels. The higher the number of levels

is, the more added value is the system provides. The fourth and fifth levels, namely

the cognition and configuration levels, were not discussed in the study. Further de-

velopments in these two levels will be conducted. For example, optimized operat-

ing rules for water pumps can be identified on the basis of future flood forecasts

by using AI techniques. The optimized operation rules can mitigate or decrease

the flooding area of a flood by using the minimum cost. This feature belongs to

the cognition level. The water pumps can be automatically operated using the IoT

through any optimized operating rule. Thus, the system can replace users and can

perform an active role in taking necessary response measures; this belongs to the

configuration level. Other applications such as providing optimized traffic route in-

formation by employing UAVs during a flood will also be included in the future

applications. The CPS-based system has proved its potential to help in decision-

making processes during a disaster. Future applications will offer more help to

users and increase the efficiency of disaster relief. More applications of AI and IoT

will be employed in next-generation hazard-related response systems.
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